Table 2 Synthetic data: compositional.

From: Edge and modular significance assessment in individual-specific networks

Method

MULTIPLIER 1.1

MULTIPLIER 1.5

MULTIPLIER 2.0

UNIFORM—NO HET

PARETO—4 MILD HET

PARETO—0.7 HIGH HET

Median AUC

Mean AUC

Median AUC

Mean AUC

Median AUC

Mean AUC

Median AUC

Mean AUC

Median AUC

Mean AUC

Median AUC

Mean AUC

MultiLOO-ISN

0.502

0.502

0.565

0.586

0.684

0.705

0.543

0.562

0.556

0.578

0.629

0.653

LOO-ISN

0.503

0.505

0.586

0.598

0.726

0.733

0.559

0.585

0.571

0.601

0.637

0.650

SSN - m

0.498

0.497

0.559

0.577

0.676

0.695

0.541

0.562

0.553

0.575

0.619

0.632

KNN log(N),P

0.503

0.503

0.582

0.596

0.714

0.730

0.556

0.579

0.567

0.595

0.642

0.656

KNN 5,\(\sqrt{N}\)

0.504

0.502

0.582

0.597

0.717

0.732

0.556

0.579

0.568

0.595

0.644

0.657

Optics 5

0.494

0.477

0.541

0.533

0.633

0.624

0.510

0.525

0.521

0.536

0.546

0.573

Optics \(\sqrt{N}\)

0.491

0.489

0.556

0.565

0.673

0.686

0.532

0.555

0.545

0.569

0.595

0.616

OTS euclidean

0.503

0.503

0.577

0.591

0.704

0.718

0.553

0.574

0.566

0.590

0.635

0.648

OTS cosine

0.499

0.500

0.504

0.504

0.499

0.503

0.498

0.497

0.496

0.495

0.509

0.514

mOTS cosine

0.499

0.499

0.503

0.506

0.497

0.505

0.494

0.493

0.491

0.491

0.519

0.525

mOTS euc

0.504

0.503

0.581

0.595

0.714

0.729

0.554

0.578

0.569

0.595

0.637

0.655

mOTS glob

0.502

0.503

0.551

0.571

0.642

0.672

0.532

0.550

0.547

0.564

0.614

0.631

Spoutlier -l

0.503

0.501

0.576

0.590

0.703

0.720

0.551

0.575

0.561

0.589

0.634

0.646

Cook’s max

0.501

0.502

0.575

0.594

0.703

0.720

0.554

0.574

0.564

0.589

0.637

0.652

Cook’s med

0.502

0.503

0.580

0.593

0.712

0.718

0.555

0.578

0.566

0.592

0.630

0.644

  1. Bold values indicate the top performer of each column.
  2. Summarization of methods’ Median and Mean performances per Mult parameter—if the average abundances for the cases individual are \(10\%\), \(50\%\) or \(100\%\) more - and Data Heterogeneity—from no to mild and high. High multipliers and more heterogeneity yield better AUC. With a Mult of 1.1, outlier detection is not better than random guessing. Notably, there is an appreciable performance gain passing from mild to elevate heterogeneity, but the difference from no to mild heterogeneity is limited. KNN’s methods and LOO-ISN are consistently among the best in every scenario, with Cook’s distance and euclidean-based Spoutlier methods closely following. Furthermore, cosine OTS, both OTS cosine and mOTS cosine, have worse performance than their euclidean counterparts. LOO-ISN achieves the top performance, 0.726, in terms of Median AUC, in the \(Mult=2.0\) scenario. This method has a 0.221 performance increment from \(Mult=1.1\) to \(Mult=2.0\), highlighting the multiplier as the primary driver of performance.