Table 1 Summary of numerical values for the data from simulation and from the experiments, allowing to regain the density. \(\rho (t) = D \, \frac{2^{\omega \, t}}{t^2}.\)

From: Prediction and experimental evidence of different growth phases of the Podospora anserina hyphal network

 

Simulation

Experiments

M2\(_1\)

M2\(_2\)

M2\(_3\)

M0\(_1\)

M0\(_2\)

M0\(_3\)

\(\omega \) [h\(^{-1}\)\(\times 100\)

59 ± 0.5

48 ± 3

46 ± 2

49 ± 3

37 ± 2

33 ± 2

33 ± 2

D [h\(^2\).mm\(^{-2}\)]

454 ± 210

194 ± 44

266 ± 54

207 ± 42

416 ± 89

489 ± 94

420 ± 80

  1. \(\omega \) is the exponential argument of the number of apexes and \(D=\frac{C}{B_1 B_2}\) is obtained from the combination of the initial number of apexes C and the results of the eigenvalues fitting procedure (see Fig. 5 and text for details). To facilitate reading, \(\omega \) values were multiplied by 100.