Table 1 The \(\vartheta \left(x\right)\) functions and their extended copulas and extended co-copulas.

From: Analyzing of optimal classifier selection for EEG signals of depression patients based on intelligent fuzzy decision support systems

S. no

\(\vartheta \left(x\right)\)

\(C\left(x,y\right)\)

\({C}^{*}\langle x,y\rangle\)

1

\({\left(-\mathrm{ln}(x)\right)}^{\lambda }\)

\(xy\)

\(x+y-xy\)

2

\({\left(x\right)}^{-\lambda }-1\)

\(\left({\left(x\right)}^{-\lambda }+{\left(y\right)}^{-\lambda }-1\right)\)

\({\left(1-x\right)}^{-\lambda }+{\left(1-x\right)}^{-\lambda }-xy\)

3

\(ln\left(\frac{{e}^{-\lambda x}-1}{{e}^{-\lambda }-1}\right)\)

\(\left(-\frac{1}{\lambda }\right)ln\left(\frac{\left({e}^{-\lambda x}-1\right)\left({e}^{-\lambda x}-1\right)}{{e}^{-\lambda }-1}+1\right)\)

\(1+\frac{1}{\lambda }ln\left(\frac{\left({e}^{-\lambda x}-1\right)\left({e}^{-\lambda x}-1\right)}{{e}^{-\lambda }-1}+1\right)\)

4

\(ln\left(\frac{1-\lambda (1-x)}{x}\right)\)

\(\left(\frac{xy}{\left(1-\lambda \right)\left(1-x\right)\left(1-y\right)}\right)\)

\(1-\left(\frac{\left(1-x\right)\left(1-y\right)}{\left(1-\lambda xy\right)}\right)\)

5

\(-ln\left(1-{\left(1-x\right)}^{\lambda }\right)\)

\(1-{\left({\left(1-x\right)}^{\lambda }+{\left(1-y\right)}^{\lambda }-{\left(1-x\right)}^{\lambda }{\left(1-y\right)}^{\lambda }\right)}^{\frac{1}{\lambda }}\)

\({\left({\left(x\right)}^{\lambda }+{\left(y\right)}^{\lambda }-{\left(x\right)}^{\lambda }{\left(y\right)}^{\lambda }\right)}^{\frac{1}{\lambda }}\)