Table 3 Using LLF, the run length profile using P distribution for Bayesian-AEWMA CC, for \(\psi\) = 0.10, n = 5.

From: Adaptive EWMA control chart using Bayesian approach under ranked set sampling schemes with application to Hard Bake process

Shift

Bayes-EWMA

SRS

Bayes-AEWMA

SRS

Bayes-AEWMA

RSS

Bayes-AEWMA

MRSS

Bayes-AEWMA

ERSS

ARL

SDRL

ARL

SDRL

ARL

SDRL

ARL

SDRL

ARL

SDRL

L = 2.7047

h = 0.086

h = 0.04155

h = 0.0367

h = 0.0445

0.00

370.63

368.13

370.98

539.06

370.22

444.84

370.62

432.08

369.39

478.05

0.20

123.94

115.00

71.98

92.48

38.92

32.65

34.34

26.39

40.25

36.17

0.30

115.00

57.42

36.26

45.49

21.90

18.59

19.71

15.39

22.60

20.23

0.40

41.33

32.49

21.09

26.30

13.89

12.61

12.45

10.70

14.07

13.57

0.50

28.51

20.18

13.71

16.73

8.96

8.96

8.36

7.82

9.38

8.45

0.60

20.95

13.50

9.53

11.25

5.98

6.36

5.66

5.77

7.06

6.46

0.70

16.46

9.64

7.09

7.86

4.23

4.45

3.88

4.02

4.83

4.51

0.75

14.79

8.35

6.20

6.50

3.65

3.81

3.31

3.31

4.19

3.95

0.80

13.38

7.17

5.54

5.54

3.23

3.19

2.84

2.71

3.36

3.32

0.90

11.29

5.57

4.52

4.17

2.53

2.24

2.24

1.94

2.69

2.39

1.00

9.79

4.49

3.83

3.20

2.09

1.57

1.84

1.32

2.25

1.80

1.50

5.82

2.03

2.26

1.27

1.29

0.53

1.18

0.43

1.37

0.62

2.00

4.18

1.20

1.66

0.78

1.06

0.25

1.03

0.17

1.10

0.32

2.50

3.31

0.84

1.34

0.55

1.01

0.10

1

0

1.02

0.14

3.00

2.75

0.66

1.16

0.39

1

0

1

0

1

0

4.00

2.13

0.38

1.02

0.15

1

0

1

0

1

0