Table 2 Model parameter settings.

From: Air-quality prediction based on the ARIMA-CNN-LSTM combination model optimized by dung beetle optimizer

Model type

Models

Parameter setting

Traditional machine learning models

SVM

kernel = ‘linear’, Other parameters select default

Deep learning models

LSTM

neurons1 = 50, neurons2 = 100, neurons3 = 150, batch_size = 64, epochs = 100, Learning Rate = 0.1, Sliding Window = 10

Combination model

ARIMA-CNN-LSTM

filters = 512, kernel_size = 2, strides = 1, 3 layers of neurons = 50, batch_size = 64, epochs = 100, Learning Rate = 0.2, Sliding Window = 10

CEEMDAN-CNN-LSTM

filters = 512, kernel_size = 2, strides = 1, neurons = 128, batch_size = 100, epochs = 100, Learning Rate = 0.2, Sliding Window = 10

CEEMDAN-LSTM

neurons1 = 128, neurons2 = 100, epochs = 100, Learning Rate = 0.2, Sliding Window = 10

Optimization algorithm model

 

3 layers of neurons = [1,300], Sliding Window = [1,50], Learning Rate = [0.001,0.99], batch_size = [1,300], filters = [1,600], kernel_size =  [1,10], strides =  [1,5],