Table 5 Results of the ablation study using different modules in the detection network (D-Net) of SinusC-Net.

From: SinusC-Net for automatic classification of surgical plans for maxillary sinus augmentation using a 3D distance-guided network

Module

Accuracy

Sensitivity

Specificity

SDR (< 2.0 mm)

MRE

convLSTM

MSI

DS

  

0.95 \(\pm\) 0.02

0.87 \(\pm\) 0.01

0.97 \(\pm\) 0.02

93.12 \(\pm\) 0.91

0.92 \(\pm\) 0.11

 

0.95 \(\pm\) 0.03

0.89 \(\pm\) 0.02

0.97 \(\pm\) 0.03

94.34 \(\pm\) 0.89

0.90 \(\pm\) 0.10

0.97 \(\pm\) 0.03

0.92 \(\pm\) 0.02

0.98 \(\pm\) 0.03

95.47 \(\pm\) 0.93

0.87 \(\pm\) 0.14

  1. convLSTM convolutional long short-term memory, MSI multi-scale inputs, DS deep supervision, SDR successful detection rate, MRE mean radial error.