Table 1 Numerical estimation of the exponents for the QEW on top of the FBM correlated lattice. The data for each set of scaling functions have been separated by a triple line, see Eqs. (26), (29), (34), and (36), which has been already shown in Figs. 345, and 6 respectively.

From: Edwards–Wilkinson depinning transition in fractional Brownian motion background

 

\(H=0.3\)

\(H=0.4\)

\(H=0.5\)

\(H=0.6\)

\(H=0.7\)

\(H=0.8\)

\(F_{c}\)

\(1.5\pm 0.04\)

\(1.4\pm 0.03\)

\(1.4\pm 0.02\)

\(1.3\pm 0.02\)

\(1.2\pm 0.01\)

\(1.1\pm 0.01\)

\(\gamma _{F}^{-1}\)

\(0.55\pm 0.05\)

\(0.45\pm 0.04\)

\(0.25\pm 0.025\)

\(0.24\pm 0.015\)

\(0.22\pm 0.02\)

\(0.21\pm 0.02\)

\(\theta\)

\(0.58\pm 0.0918\)

\(0.62\pm 0.05\)

\(0.64\pm 0.03\)

\(0.91\pm 0.03\)

\(1.25\pm 0.04\)

\(1.38\pm 0.066\)

b

\(1.116\pm 0.08\)

\(1.146\pm 0.077\)

\(1.223\pm 0.0575\)

\(1.252\pm 0.0565\)

\(1.232\pm 0.065\)

\(1.276\pm 0.049\)

\(\tau _{t}\)

\(1.446\pm 0.05\)

\(1.427\pm 0.048\)

\(1.463\pm 0.042\)

\(1.457\pm 0.042\)

\(1.424\pm 0.04\)

\(1.448\pm 0.04\)

q

\(1.735\pm 0.5\)

\(1.794\pm 0.3\)

\(2.558\pm 0.7\)

\(2.45\pm 0.5\)

\(2.538\pm 0.4\)

\(2.487\pm 0.1\)

A

\(4.2\pm 0.01\)

\(3.31\pm 0.02\)

\(3.29\pm 0.02\)

\(3.23\pm 0.02\)

\(3.09\pm 0.03\)

\(2.99\pm 0.04\)

\(\alpha _w\)

\(2.59\pm 0.2\)

\(2.73\pm 0.13\)

\(2.92\pm 0.26\)

\(2.94\pm 0.2\)

\(3.1\pm 0.2\)

\(3.247\pm 0.24\)

\(\beta _w\)

\(0.8\pm 0.01\)

\(0.815\pm 0.01\)

\(0.827\pm 0.012\)

\(0.832\pm 0.013\)

\(0.839 \pm 0.014\)

\(0.847\pm 0.016\)

z

\(1.855\pm 0.42\)

\(1.905\pm 0.25\)

\(2.05\pm 0.32\)

\(1.839 \pm 0.3\)

\(1.929\pm 0.31\)

\(1.982\pm 0.4\)

\(\gamma _w\)

\(0.8\pm 0.02\)

\(0.88\pm 0.01\)

\(0.95\pm 0.026\)

\(0.99\pm 0.0575\)

\(1\pm 0.1\)

\(1.01\pm 0.12\)