Table 4 Performance of the new and Korean undiagnosed diabetes screening method in the development and validation datasets.
Model | Screening method | Feature | AUC (95% CI) | Youden index | Sensitivity (%) | Specificity (%) | PPV | NPV | PLR | NLR | |
---|---|---|---|---|---|---|---|---|---|---|---|
Train and Internal validation set | Lee* + RHR | Risk score | Sex, Age, WC, RHR, Family history of diabetes, Hypertension status, Smoking status, Alcohol consumption | 0.756 (0.728 to 784) | 39 | 70 | 69 | 0.09 | 0.98 | 2.24 | 0.44 |
Logistic Regression | Logistic Regression | 0.799 (0.775 to 0.823) | 45.4 | 83.20 | 62.20 | 0.09 | 0.99 | 2.21 | 0.27 | ||
Random Forest | Random Forest Classifier | 0.794 (0.77 to 0.818) | 48.3 | 86.60 | 61.70 | 0.09 | 0.99 | 2.3 | 0.22 | ||
LGBM | LightGBM Classifier | 0.802 (0.778 to 0.826) | 45.1 | 83.50 | 61.60 | 0.09 | 0.99 | 2.17 | 0.27 | ||
XGB | XGBoost Classifier | 0.796 (0.772 to 0.820) | 44.9 | 81.40 | 63.50 | 0.09 | 0.99 | 2.35 | 0.23 | ||
Ada | AdaBoost Classifier | 0.796 (0.772 to 0.820) | 44.3 | 80.80 | 63.50 | 0.09 | 0.99 | 2.21 | 0.3 | ||
External validation set | Lee* + RHR | Risk score | Sex, Age, WC, RHR, Family history of diabetes, Hypertension status, Smoking status, Alcohol consumption | 0.765 (0.738 to 0.792) | 42 | 78 | 64 | 0.11 | 0.98 | 2.17 | 0.35 |
Logistic Regression | Logistic Regression | 0.808 (0.793 to 0.823) | 48.7 | 88.70 | 59.90 | 0.11 | 0.99 | 2.21 | 0.18 | ||
Random Forest | Random Forest Classifier | 0.807 (0.792 to 0.822) | 47.6 | 83.50 | 64.03 | 0.11 | 0.98 | 2.32 | 0.26 | ||
LGBM | LightGBM Classifier | 0.811 (0.796 to 0.826) | 48.3 | 84.00 | 64.30 | 0.11 | 0.99 | 2.35 | 0.25 | ||
XGB | XGBoost Classifier | 0.810 (0.975 to 0.825) | 48 | 85.20 | 63.00 | 0.11 | 0.99 | 2.29 | 0.23 | ||
Ada | AdaBoost Classifier | 0.800 (0.784 to 0.816) | 46.3 | 84.50 | 61.80 | 0.11 | 0.99 | 2.21 | 0.25 |