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SU2GE‑Net: a saliency‑based 
approach for non‑specific class 
foreground segmentation
Xiaochun Lei 1,2,3, Xiang Cai 1,3, Linjun Lu 1, Zihang Cui 1 & Zetao Jiang 1,2*

Salient object detection is vital for non-specific class subject segmentation in computer vision 
applications. However, accurately segmenting foreground subjects with complex backgrounds and 
intricate boundaries remains a challenge for existing methods. To address these limitations, our 
study proposes SU2GE-Net, which introduces several novel improvements. We replace the traditional 
CNN-based backbone with the transformer-based Swin-TransformerV2, known for its effectiveness 
in capturing long-range dependencies and rich contextual information. To tackle under and over-
attention phenomena, we introduce Gated Channel Transformation (GCT). Furthermore, we adopted 
an edge-based loss (Edge Loss) for network training to capture spatial-wise structural details. 
Additionally, we propose Training-only Augmentation Loss (TTA Loss) to enhance spatial stability 
using augmented data. Our method is evaluated using six common datasets, achieving an impressive 
Fβ score of 0.883 on DUTS-TE. Compared with other models, SU2GE-Net demonstrates excellent 
performance in various segmentation scenarios.

Deep learning has been applied to all sectors1,2 in recent years. Image segmentation is a new task based on deep 
learning techniques. Image segmentation3–6 is widely used in various fields, such as autonomous driving and 
portrait photography. The core segmentation methods are all based on datasets limited to single or multiple cat-
egories for segmentation, and the semantic segmentation task can be combined with the saliency object detection 
task to achieve a non-specific class of foreground segmentation. The pixel-level semantic segmentation task is 
transformed into a binary classification problem that distinguishes whether the pixel points of an image belong 
to the foreground or the background. Such algorithms can be applied to intelligent media interaction to quickly 
design creative images that can change backgrounds for pictures or videos and integrate foreground characters 
into different scenes to produce various creative applications.

U2-Net7 is currently one of the state-of-the-art methods in the field of saliency object detection, but using a 
direct method is not feasible in non-specific class subject segmentation. Some of the results are demonstrated 
in the central column of Fig. 1, the problems of which include: 

(1)	 The subject information will be lost when the foreground subject is not continuous.
(2)	 It is difficult to separate the background and foreground subjects for skeleton objects or objects close to 

the background color.
(3)	 The problem of missing subjects occurs in the case of multiple subjects.

U2-Net does not focus enough attention on the subject leading to the first problem, which can be resolved 
using the GCT​8. The GRSU-L module is constructed by integrating the GCT with the RSU-L module of U2-Net. 
This module uses learnable parameters to decide the channel relationship of the feature map. These weight 
parameters determine the competition and cooperative behavior between neurons and are jointly optimized 
with the convolution weight. This improved scheme can detect the main part more acutely.

The simplified work requires only the foreground and background of the dichotomous image. Edge extrac-
tion is relatively difficult for complex RGB images but relatively easy for edges of binary images, so Edge Loss is 
proposed to resolve the second problem. Edge Loss performs edge detection on the segmented mask and label 
mask and calculates the binary cross-entropy loss to obtain the difference between the predicted result and the 
label on the edge, enabling the model to learn along the direction of the accurate edge.
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The first GRSU-L module severely affects the subsequent detection task by extensive experiments. When 
there is a large missing area in the detection result, the feature map of the first GRSU-L module is already miss-
ing that part and is not caused by downsampling. Therefore, the third problem should be solved by enhancing 
the spatial perceptibility and global context-aware of the model. TTA Loss is proposed to solve this problem. By 
fusing the prediction after data enhancement (for example, horizontal flipping) using the spatial domain with 
the prediction of the original images and back-propagating the loss calculated as the final prediction result, the 
model converges faster and better. The Transformer is better than CNN in obtaining global features, so the Swin 
TransformerV2 is added to obtain more global information.

The final modified network SU2GE-Net achieves the foreground segmentation of non-specific class of image 
subjects. In addition, experimental validation is performed on DUTS-TE9, ECSSD10, PASCAL-S11, HKU-IS12, 
DUT-OMRON13, SOD14, showing that the proposed model outperforms well.

The main contributions of the paper are: 

(1)	 A saliency-based foreground subject segmentation model, SU2GE-Net, is proposed to effectively separate 
non-specific class foregrounds from backgrounds.

(2)	 Based on U2-Net, the Swin TransformerV215 is used for feature extraction. SU2GE-Net is rebuilt accord-
ing to the architecture of U2-Net, which improves the performance of extracting image features from the 
backbone network. The GRSU-L module was reconstructed by integrating the GCT to achieve a better 
segmentation effect non-specific categories of subjects.

(3)	 TTA Loss and Edge Loss are added to the model training process to improve the model convergence effi-
ciency, optimize the edge detail part and subject recognition.

Related works
Salient object detection.  Salient object detection is similar in results to that of the segmentation task, 
with the difference in the different Ground Truth labels of the two tasks. The purpose of salient object detection 
is to identify the main part and analyze the probability that each pixel in the image is the main class. The real 
label of the segmentation task marks the category corresponding to each pixel.

Salient object detection can be divided into two categories according to different data types, one is salient 
object detection of RGB image type, whose input image is the common RGB image type, and the other is salient 
object detection of RGB-D16–18 image type, whose input image includes depth maps in addition to RGB images. 
Since depth maps require an additional depth camera to capture, only RGB images are considered for salient 
object detection to acquire the main part of the image.

U2-Net uses an Encoder–Decoder structure for salient object detection of images. The U2-Net encoder has 
been strategically designed to make feature extraction more efficient and rich to better distinguish the main part.

Non‑specific class foreground subject segmentation.  The task of non-specific class foreground sub-
ject segmentation is to find and segment the main part of an input image. This task is also very similar to the 
matting task19, which starts by feeding the trimap together to the Encoder–Decoder, predicting the alpha mask 
of the image, and optimizing the alpha mask with a small network for more detailed edges.

Sengupta et al.20 have proposed a background matting technique that enables casual capture of high-quality 
foreground+alpha mattes in natural settings. This approach avoids using a green screen or painstakingly con-
structing a detailed trimap as typically needed for high matting quality.

Figure 1.   Segmentation results of U2-Net.
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However, the only disadvantage is that the model needs the background image of the input image. The back-
ground image is not easy to obtain, so the scheme also has some limitations. Chen et al.21 achieved excellent 
results in portrait segmentation with a single RGB image input, but unfortunately, the method only targets a 
single category and does not achieve foreground subject segmentation for a non-specific class.

Attention mechanism.  Attention mechanisms in computer vision are implemented in various forms, 
such as channel attention mechanisms22–24, spatial attention mechanisms25,26, self-attention mechanisms27,28, and 
gated attention mechanisms10,29. Channel attention and spatial attention, respectively, set different weights that 
can be learned at the channel and spatial levels of an image and use these weights to distinguish the importance 
of different channels and spaces. The self-attention mechanism disregards pooling weights and instead employs 
mappings of feature maps to distinct spaces, combining features from three different spaces in a specific manner 
to achieve the attention mechanism’s intended effect. Gated attention, however, uses learnable parameters to 
model the channel relations in the feature map, which correspond to the competition and cooperation relations 
of neurons in the neural network, and guides the competition and cooperation by gating parameters, thus solv-
ing the deficiency of insufficient attentional attention.

Swin TransformerV2.  Compared to CNN, the Transformer30 can extract global features better. The Swin 
TransformerV2, modified from the Swin Transformer31, makes the network model larger and can adapt to dif-
ferent resolution images and different size windows.

Test time augmentation.  Test Time Augmentation32 is a trick that is recognized to improve predictions 
and is often used in hit-list competitions. Specifically, it creates multiple augmented copy images of each pre-
dicted image in the test set, lets the model make predictions for each image, and speaks the corresponding 
images for fusion as the final prediction. Although Test Time Augmentation can get better prediction results, 
it increases the time consumed, so we propose TTA Loss. The process is described in the section Training-only 
Augmentation Loss.

Proposed method
Initially, we present an overview of the utilized modules and elaborate on the specifics of the SU2GE-Net network 
architecture in Fig. 2a. The network supervision strategy and the loss are described at the end of this section.

Swin TransformerV2.  The Swin TransformerV2 tackles three major issues in the training and application 
of large vision models. A residual-post-norm method combined with cosine attention was used to improve 
training stability uses. It proposes a log-spaced continuous position bias method to effectively transfer models 
pre-trained using low-resolution images to downstream tasks with high-resolution inputs. The Transformer 
requires a large dataset and has a large computational; therefore, the Swin TransformerV2 uses a self-super-
vised pre-training method, SimMIM, to reduce the need for vast labeled images.We tested various Swin Trans-
formerV2 models on DUTS-TE and ended up using the following config: input size:256, drop path rate:0.3, 
embed dim:96, depths:[2, 2, 18, 2], num heads:[3, 6, 12, 24], window size:16.

GRSU‑L module.  The GRSU-L module is the basic unit that constitutes the SU2GE-Net, and its internal 
RSU-L structure is the same as that of U2-Net, a U-shaped structure. The structure diagram of the GRSU-L mod-

Figure 2.   Network structure chart: (a) the SU2GE-Net structure and (b) the GRSU-L module structure.
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ule is illustrated in Fig. 2b. GCT denotes the module that implements the GCT. To solve the attention problem, 
the GCT is introduced in the GRSU-L module to obtain the most attentional part of the image before perform-
ing feature extraction. It is set before each convolutional layer of GRSU-L so that the module can extract more 
attentional features33. The regions with higher attention weights are often the main part of the image, and the 
use of gated attention enables the model to segment the main part better. In the GRSU-L module, L denotes the 
number of layers that the module performs in the Encoder–Decoder phase. By controlling the number of layers 
and the extraction method used for feature extraction of feature maps in different stages of the network, effective 
utilization of features for images of different scales is achieved.

Gated channel transformation (GCT).  The utilization of GCT addresses the model attention problem 
by leveraging the competitive and cooperative dynamics among neurons in neural networks. This mechanism 
stimulates collaboration among network neurons when attention is insufficient, enhancing focus on the subject 
of interest. Conversely, it encourages competition among neurons in situations of excessive attention, facilitating 
the retention of more competitive components. The GCT is illustrated in Fig. 3.

Architecture of SU2GE‑Net.  In order to enhance our model’s ability to capture long-range dependencies 
and extract comprehensive contextual information, we have opted to substitute the conventional CNN-based 
backbone with the Swin-TransformerV2. Additionally, GCT was introduced to autonomously regulate the inter-
play between competition and cooperation among neurons during the model training process. This guidance 
facilitated the model in prioritizing its attention toward the main component. The GRSU-L module constructed 
by the GCT, as the basic unit of the SU2GE-Net, has an internal U-shaped Encoder–Decoder structure. The 
extracted features are different according to the different depths of the network. The SU2GE-Net is a two-level 
nested U-structure, and combined with the reasonable use of the GRSU-L module; it can obtain different scales 
of the segmentation results (6 scales are used in the article) extracted again by 1 × 1 convolution after stitching 
the 6 different scales of feature maps. To address the problem of rough object edge segmentation, edge detection 
is performed using pairs of segmentation results with the results of real labels, and the difference between the 
two edges is calculated using Binary Cross-Entropy loss. The gradient calculation is performed using TTA Loss, 
which eventually guides the network to output a more refined network segmentation of the subject. The intro-
duction of this loss function will only guide the segmentation results of the image subject segmentation model 
toward fine edges during the training process of the model and will not increase the number of parameters or 
the computational effort of the model. We sample the output of each Swin TransformerV2 Block back to the size 
of the original images, concatenate with the original images, and later use 1 × 1 convolution to downscale to three 
channels. Figure 2a shows the SU2GE-Net structure diagram in detail.

Edge loss.  Following the loss function design adopted by U2-Net, the outer U-shaped structure, the subject 
mask generated by each layer of decoding, and the real labels are computed with a Binary Cross-Entropy loss for 
deep supervised training, and this loss Lglobal can be expressed in Eq. (1):

where N denotes the total number of layers in the outer U-shaped structure, and i denotes the subject mask output 
at layer i in the decoder. xi represents the predicted result. Respectively, yi denotes the true label corresponding 
to the input image.

In the model calculation process, the size of the output result of each layer is different, so the images are 
interpolated to the size of the input image before summation is performed. BCELoss() denotes the Binary Cross-
Entropy loss function, which is calculated as depicted in Eqs. (2) and (3):

(1)Lglobal =

N
∑

i=1

BCELoss
(

xi , yi
)

,

(2)BCELoss(a, b) =mean

(

{l1, . . . , lS}
⊤
)

,

Figure 3.   The GCT structure.
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mean() denotes the average of all l. Where aj and bj denote the pixel value of the jth input image with its cor-
responding label, BatchSize is S, and wj denotes the weight of the jth image.

To address the problem that the segmentation of object edges by U2-Net has certain defects, the edge operator 
Edge() is used to perform edge detection of the prediction mask and the real label, and the Edge Loss is designed 
according to the edge detection results of both, whose calculation can be expressed using Equation (4):

where x0 and y0 denote the mask and true label of the final subject segmentation of the model, respectively, and 
Edge() denotes the edge detection of the input image using edge operators (e.g. Canny, Laplacian, Sobel, Scharr).

The loss function Loss for model training is obtained by combining Ledge and Lglobal as shown in Eq. (5):

Among them, wg and we are hyperparameters that can be set independently. In the early training period, the fore-
ground segmentation model of non-specific class subjects is not perfect, and the edge operator extracts the image 
edges poorly, so the value of wg will be set larger than we , whereas the segmentation results are gradually refined 
in the later training period, so the value of wg will be set smaller than we . The process is illustrated in Fig. 4.

Training‑only augmentation loss.  In a manner similar to Test Time Augmentation, input x performs 
data augmentation again before inputting into the network, the results of multiple data augmentations are pre-
dicted and the corresponding losses are obtained, and the mean of these losses is used to back-propagation to 
provide a more accurate convergence guide to the model. The procedure is depicted in Fig. 5. Losstta is referred 
to as Eq. (6):

(3)lj =− wj

[

bj · log aj +
(

1− bj
)

· log
(

1− aj
)]

.

(4)Ledge
(

x0, y0
)

= BCELoss
(

Edge(x0), Edge
(

y0
))

,

(5)Loss = wg · Lglobal + we · L edge .

Figure 4.   The pipeline of calculating edge loss.

Figure 5.   The TTA loss calculation pipeline.
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where net() is SU2GE-Net, gt is the Ground Truth, x is the set of predicted images containing the original images 
and the data enhancement of the original images, the data enhancement can be flipped, rotated shifted, etc. Ave() 
is the averaging function. We believe that the idea of TTA Loss can be used in various tasks and is not limited to 
saliency target detection. Losstta is the value ultimately used in the article to guide SU2GE-Net back-propagation.

Results and discussion
Dataset.  Train set: We use DUTS-TR to train SU2GE-Net. DUTS-TR contains 10,553 images and is gener-
ally used on saliency object detection. Test set: SOD includes 300 images that were originally intended for image 
segmentation. ECSSD contains 1000 images that are semantically meaningful but structurally complex. DUT-
OMRON has 5168 images, each with one or two objects. PASCAL-S is made up of 850 images with cluttered 
backgrounds and intricate foreground objects. HKU-IS has 4447 images. The majority of them have multiple 
connected or disconnected foreground objects. DUTS-TE is a part of DUTS and has 5019 images for testing.

Implementation details.  Training was performed on a Tesla A100 GPU (40GB), where the images were 
first scaled to a size of 320 × 320, then horizontally flipped for data enhancement, and finally randomly cropped 
to a size of 288 × 288. The hyperparameters wg and we in the total loss function are set to 0.7 and 0.3 in the first 
100 epochs and swapped with each other in the second 100 epochs. Using an AdamW optimizer with OneCy-
cleLR as Schedule, the maximum learning rate was set to 1e−5, betas = (0.9, 0.999).eps = 1e−8, weightdecay = 0.05. 
The results of the metrics calculation are illustrated in Table 1, and the metrics were calculated once per 1000 
iterations. TTA Loss was used after training 20 epochs.

Evaluation metrics.  In our evaluation, we employed five widely adopted metrics, namely MAE, MaxF, 
MeanF, Fβ and S-measure , to assess the performance of the model. MaxF, MeanF, and Fβ were computed based 
on precision-recall pairs, using a weight β2 of 0.3. MaxF represents the maximum value achieved across all 
thresholds, while MeanF denotes the average value calculated for all thresholds. For this particular case, Fβ was 
determined using the middle threshold of 127. The S-measure incorporates two components: object-aware (So) 
and region-aware (Sr), both weighted equally with α set to 0.5 to ensure equilibrium.

Tests with different edge operators.  In this subsection, four operators, Sobel, Scharr, Laplacian, and 
Canny, were used for the Edge Loss function of SU2GE-Net in the Edge Loss calculation, and the model was 
trained separately to determine the most suitable operator in the Edge Loss function. After the input image was 
downsampled by the model, the resolution decreased, making the edges of the image not clear enough; even if 
the image is restored using the upsampling method, the original edges of the image also have some loss. Since 
the real label is not downsampled, the edge information is not lost. The article designs an Edge Loss function 
by performing edge detection on the output mask and the real label (both are binarized images) and using the 
edge information not lost in the real label as the basis for the edge refinement of the output mask. The traditional 
edge detection operator, which usually has a better performance in images without complex pixels, especially in 
binarized images, and the edge detection results of some binarized images are displayed in Fig. 6.

Sobel and Scharr are first-order operators, while Laplacian and Canny are improved second-order operators 
built on top of the first-order. The second-order operators usually process better than the first-order operators. 
In DUTS-TE there are more subjects with complex structures which have more noise on the edges, and Canny is 
generally sensitive to noise, and the results of image processing for most of them are not very different and more 
stable, and Canny has also achieved better results in the experiments. Therefore, in the training of SU2GE-Net, 
the Canny operator was used to calculate Edge Loss.

Comparison with state‑of‑the‑arts.  We compare the proposed algorithm with 6 state-of-the-art sali-
ency detection methods, including the U2-Net, BASNet34, P2T35, MSIN36, SCRN37, EGNet-R38,RCSB39 and DC-
Net40. All saliency maps of these methods are computed by their released codes for fair comparisons. The supe-
riority of SU2GE-Net can be seen in Table 1.

Qualitative evaluation.  Some representative examples are shown in Fig. 7. These examples reflect a vari-
ety of situations. 1st to 3rd row reflects the recognition and segmentation of the subject in different situations. 
Compared to the 1st row, all other models result in missing segmentation above the ankle part due to the white 
harness. And SU2GE-Net segments the edges more smoothly than gt. For the 2nd row, other models fail to dis-
tinguish the subject due to changes in the color of the dog’s fur and the overlapping of the tree and dog, resulting 
in incorrect segmentation. SU2GE-Net completely distinguishes the body part of the dog. For the prediction of 

(6)Losstta = Ave

(

Loss

(

∑

x∈X

net(x)

)

, gt

)

,
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the 3rd row, other models inaccurately segmented the subject due to the similar color of the rusty nail and the 
tree stump. SU2GE-Net is able to extract the main body of the iron nail. 4th row reflects the segmentation effect 
of the object on the occluded subject. U2-Net and BASNet incorrectly identify the branch as the subject, while 
P2T predicts the branch as the background but does not recognize the tail well due to the lack of global semantic 
information. SU2GE-Net is able to remove the branches and retain the bird as a whole. The 5th and 6th rows 
show the segmentation of single and multiple objects with low contrast between foreground and background. 
Even when the subject is challenging to identify with eyes, SU2GE-Net can still be effectively segmented. The 
remaining models can only segment a single object, and some of the segmentation is erroneous. In assumption, 
SU2GE-Net consistently generates more accurate and complete saliency maps, can effectively segment holes and 
occluded objects, and identifies borders with low contrast and small objects.

Ablation experiment.  The effectiveness of the different trick overlays can be seen in Table  1. Figure  8 
shows the ablation experiments in three different groups. The comparison of the proposed methods and U2-Net 
demonstrates that our methods perform admirably in terms of convergence speed. The Base is U2-Net+Swin 
TransformerV2, and the other two groups build on it by adding TTA loss, Edge Loss, and GCT. It is obvious to 
see that the model is almost converged in the 45th epoch, while U2-Net needs about 230 epochs.

Conclusions
Edge-based loss functions were designed to be trained for edges and use the GCT to promote cooperative and 
competitive relationships between neurons. Feature extraction is performed using the Swin TransformerV2. The 
non-specific class foreground subject segmentation algorithm SU2GE-Net was proposed based on U 2-Net, and 
TTA loss was used to make the network converge more efficiently, solving the problems of concern Fig. 1 atten-
tion and edge roughness. The feasibility of edge-based loss computation was verified by showing edge detection 
results using the traditional edge operator for true label masks. Four different edge detection operators were 
also used for experiments, and the Canny operator with the best results was finally selected as the computation 
of the Edge Loss function. Validation using the multiple datasets demonstrated the excellent performance of 
SU2GE-Net, which was better compared to some SOTA methods. The comparative experiments show that SU2

GE-Net has fast convergence and universal applicability when segmenting multiple image scenes. However, the 
model does not perform well in segmenting fine details such as hair, indicating a limitation in the size and type 
of the edge operator used in calculating the Edge Loss. We believe that future research should focus on proposing 
improved approaches to address this issue.

Figure 6.   Detection results of different edge detection operators.
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Figure 7.   Several visual examples with style-varying objects and their predictions generated by the proposed 
SU2GE-Net, U2-Net, U2-Net, BASNet and P2T methods.
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Table 1.   Metrics on the DUTS-TE, DUT-OMRON, HKU-IS, ECSSD, SOD, and PASCAL-S test sets were 
calculated. Higher values of MaxF, MeanF, Fβ , and S −measure , and lower values of MAE, indicate better 
performance. Optimal outcomes are highlighted in bold.

Model DUTS-TE DUT-OMRON HKU-IS

Swin TTA​ Edge GCT​ MAE↓ MaxF↑ MeanF↑ Fβ ↑ S-measure↑ MAE↓ MaxF↑ MeanF↑ Fβ ↑ S-measure↑ MAE↓ MaxF↑ MeanF↑ Fβ ↑ S-measure↑

� 0.034 0.912 0.843 0.881 0.904 0.051 0.866 0.78 0.813 0.865 0.031 0.947 0.898 0.93 0.928

�        � 0.033 0.908 0.849 0.88 0.905 0.051 0.865 0.788 0.814 0.865 0.029 0.947 0.904 0.930 0.929

� � � 0.033 0.908 0.849 0.88 0.904 0.051 0.863 0.787 0.812 0.864 0.029 0.947 0.905 0.93 0.929

 � � � �
0.032 0.912 0.855 0.883 0.906 0.050 0.865 0.790 0.815 0.864 0.028 0.948 0.907 0.931 0.930

(Ours:SU2GE-Net)

 U2-Net 0.053 0.862 0.794 0.812 0.853 0.059 0.829 0.753 0.768 0.832 0.036 0.929 0.887 0.903 0.903

 P2T-vgg 0.041 0.892 0.840 0.856 0.882 0.057 0.831 0.764 0.777 0.837 0.029 0.942 0.91 0.924 0.920

 P2T-resnet 0.035 0.898 0.858 0.872 0.892 0.049 0.839 0.784 0.795 0.849 0.027 0.943 0.916 0.929 0.923

 MSIN 0.037 0.884 0.828 0.825 0.884 0.055 0.810 0.756 0.738 0.833 0.028 0.935 0.908 0.899 0.920

 SCRN 0.040 0.888 0.809 0.803 0.885 0.056 0.811 0.746 0.72 0.056 0.033 0.935 0.897 0.878 0.917

 EGNet-R 0.039 0.889 0.815 0.816 0.887 0.053 0.815 0.756 0.738 0.053 0.031 0.935 0.901 0.887 0.918

 BASNet 0.048 0.859 0.791 0.803 0.866 0.056 0.805 0.756 0.751 0.056 0.033 0.93 0.898 0.890 0.908

 RCSB 0.035 0.889 0.840 0.881 0.049 0.809 0.752 0.835 0.027 0.938 0.909 0.919

 DC-Net 0.035 0.899 0.852 0.896 0.053 0.827 0.772 0.849 0.027 0.942 0.909 0.924

Model ECSSD SOD PASCAL-S

Swin TTA​ Edge GCT​ MAE↓ MaxF↑ MeanF↑ Fβ ↑ S-measure↑ MAE↓ MaxF↑ MeanF↑ Fβ ↑ S-measure↑ MAE↓ MaxF↑ MeanF↑ Fβ ↑ S-measure↑

� 0.032 0.958 0.917 0.942 0.937 0.086 0.883 0.82 0.852 0.830 0.058 0.902 0.840 0.864 0.881

�        � 0.030 0.957 0.921 0.942 0.937 0.083 0.883 0.828 0.851 0.828 0.057 0.901 0.844 0.865 0.881

�           � � 0.030 0.957 0.921 0.943 0.937 0.083 0.879 0.829 0.852 0.827 0.057 0.901 0.844 0.865 0.880

�                     � � �
0.028 0.959 0.925 0.945 0.939 0.083 0.882 0.834 0.854 0.827 0.055 0.901 0.847 0.865 0.881

(Ours:SU2GE-Net)

 U2-Net 0.041 0.947 0.907 0.922 0.915 0.119 0.859 0.772 0.785 0.770 0.084 0.865 0.797 0.808 0.829

 P2T-vgg 0.034 0.956 0.925 0.938 0.928 0.102 0.871 0.808 0.818 0.797 0.065 0.888 0.837 0.848 0.860

 P2T-resnet 0.032 0.953 0.927 0.938 0.927 0.098 0.871 0.818 0.828 0.799 0.062 0.887 0.845 0.855 0.864

 MSIN 0.033 0.947 0.924 0.911 0.925 0.064 0.882 0.842 0.821 0.857

 SCRN 0.037 0.950 0.918 0.899 0.927 0.065 0.890 0.839 0.816 0.867

 EGNet-R 0.037 0.947 0.920 0.903 0.925 0.075 0.878 0.831 0.807 0.853

 BASNet 0.037 0.942 0.879 0.904 0.916 0.077 0.863 0.781 0.800 0.837

 RCSB 0.034 0.944 0.916 0.922 0.059 0.875 0.826 0.860

 DC-Net 0.034 0.949 0.913 0.924 0.066 0.874 0.814 0.857

Figure 8.   Training process MeanF curves.
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Data availibility
The data generated and analysed during the current study are available from the corresponding author on 
reasonable request. The DUTS-TE datasets is available online at http://​salie​ncyde​tecti​on.​net/​duts. The ECSSD 
datasets is available online at https://​datas​ets.​activ​eloop.​ai/​docs/​ml/​datas​ets/​ecssd-​datas​et/. The DUT-OMRON 
datasets is available online at http://​salie​ncyde​tecti​on.​net/​dut-​omron/. The SOD datasets is available online at 
https://​www.​elder​lab.​yorku.​ca/​resou​rces/​salie​nt-​objec​ts-​datas​et-​sod/. The PASCAL-S datasets is available online 
at https://​gas.​gravi​ti.​com/​datas​et/​gravi​ti/​PASCAL_S The HKU-IS datasets is available online at https://i.​cs.​hku.​
hk/​yzyu/​resea​rch/​deep_​salie​ncy.​html.
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