Table 2 The three best parameter settings for each classifier and each data group based on the fivefold inner CV.

From: Virtual reality for assessing stereopsis performance and eye characteristics in Post-COVID

Classifier

Parameter names

Stereopsis performance

Pupil diameter

Gaze behavior

All

SVM (lin kernel)

c

0.063 (9)

0.001 (8)

0.125 (5)

0.001 (13)

1.000 (8)

256.000 (5)

0.250 (12)

0.001 (7)

1.000 (7)

0.063 (9)

0.001 (8)

1.000 (6)

SVM (rbf kernel)

c, gamma

1.000, 0.500 (5)

4.000, 0.500 (5)

0.500, 0.125 (4)

1.000, 2.000 (10)

1.000, 1.000 (5)

256.000, 0.125 (2)

1.000, 4.000 (13)

0.500, 2.000 (8)

0.500, 1.000 (6)

2.000, 1.000 (12)

1.000, 0.250 (7)

4.000, 0.250 (4)

kNN

n_neighbors, weights

5, uni (9)

11, uni (5)

9, uni (4)

5, uni (12)

4, dist (6)

3, uni (3)

4, dist (8)

3, uni (5)

6, dist (4)

7, uni (12)

5, uni (7)

10, dist (5)

RF

max_depth, min_samples_split, min_samples_leaf

2, 2, 2 (11)

2, 2, 1 (10)

2, 2, 4 (10)

2, 2, 1 (9)

2, 6, 1 (6)

2, 2, 2 (5)

2, 2, 4 (15)

2, 2, 1 (9)

2, 2, 2 (2)

2, 2, 1 (17)

2, 2, 2 (6)

2, 2, 4 (3)

  1. The optimized parameter names are given. The number in brackets, written in italic, refers to the number of times this setting achieved the best average performance. The parameters were rounded to equalize decimals (e.g., 0.001 refers to rounded \(2^{-10}\)).