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The anoikis‑related gene signature 
predicts survival accurately in colon 
adenocarcinoma
Gunchu Hu 1, Jian Li 1, Yi Zeng 2,3, Lixin Liu 1, Zhuowen Yu 2,4, Xiaoyan Qi 1, Kuijie Liu 1* & 
Hongliang Yao 1*

Colon adenocarcinoma (COAD) is a serious public health problem, the third most common cancer and 
the second most deadly cancer in the world. About 9.4% of cancer-related deaths in 2020 were due to 
COAD. Anoikis is a specialized form of programmed cell death that plays an important role in tumor 
invasion and metastasis. The presence of anti-anoikis factors is associated with tumor aggressiveness 
and drug resistance. Various bioinformatic methods, such as differential expression analysis, and 
functional annotation analysis, machine learning, were used in this study. RNA-sequencing and 
clinical data from COAD patients were obtained from the Gene expression omnibus (GEO) and The 
Cancer Genome Atlas (TCGA) databases. Construction of a prognostic nomogram for predicting overall 
survival (OS) using multivariate analysis and Lasso-Cox regression. Immunohistochemistry (IHC) 
was our method of validating the expression of seven genes that are linked to anoikis in COAD. We 
identified seven anoikis-related genes as predictors of COAD survival and prognosis, and confirmed 
their accuracy in predicting colon adenocarcinoma prognosis by KM survival curves and ROC curves. A 
seven-gene risk score consisting of NAT1, CDC25C, ATP2A3, MMP3, EEF1A2, PBK, and TIMP1 showed 
strong prognostic value. Meanwhile, we made a nomogram to predict the survival rate of COAD 
patients. The immune infiltration assay showed T cells. CD4 memory. Rest and macrophages. M0 has 
a higher proportion in COAD, and 11 genes related to tumor immunity are important. GDSC2-based 
drug susceptibility analysis showed that 6 out of 198 drugs were significant in COAD. Anoikis-related 
genes have potential value in predicting the prognosis of COAD and provide clues for developing new 
therapeutic strategies for COAD. Immune infiltration and drug susceptibility results provide important 
clues for finding new personalized treatment options for COAD. These findings also suggest possible 
mechanisms that may affect prognosis. These results are the starting point for planning individualized 
treatment and managing patient outcomes.

COAD is the fourth most common malignancy with an estimated 247,563 deaths in China in 20181. COAD is 
a disease that occurs only in the colon and is caused by excessive proliferation of epithelial cells in the colonic 
gland. There are three main types of COAD: sporadic, hereditary, and colitis-associated. If COAD is detected 
early enough, it can be completely cured with surgery and treatment. However, high recurrence rates and anti-
cancer drug resistance increase the rate of treatment failure rates2. In recent years, with the development of the 
economy, the incidence and mortality of COAD have risen rapidly3. Molecular studies are playing an increasingly 
important role in predicting prognosis and determining optimal treatment in poor-prognosis colon cancer4. 
Emphasizing the status, development, risk factors and controls of COAD is important to raise public awareness.

Anoikis, a form of programmed cell death resulting from loss of interaction with the cells outer membrane, is 
known as a physiological metastatic disease5–7. Anoikis occurs when cells detach from their normal extracellular 
matrix (ECM), which provides them with signals for survival and growth. By inducing anoikis, the body prevents 
cells from growing and implanting in inappropriate locations, such as other organs, where they could cause harm. 
However, tumor cell metastasis is the process by which cancer cells spread from their primary site to distant sites 
in the body, forming secondary tumors. To achieve metastasis, tumor cells must overcome anoikis and survive 
in ECM-deprived conditions. Cancer cells must develop anoikis resistance to survive in the bloodstream before 
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metastasizing to distant organs8,9. Acquired anaerobic resistance allows cancer cell survival in circulation and is 
important for metastatic progression. However, the molecular mechanism of anoikis resistance in tumor cells 
remains unknown. Jin Lingtao confirmed that the increased expression of GDH1 mediated by the transcription 
factor PLAG1 and its downstream substrate AMPK can provide anti-anoikis and pro-metastasis signals for lung 
cancer cells10. Lindsay J shows overexpression of CBX2 in high-grade primary serous ovarian cancer tumors and 
cell lines to prevent anoikis in suspension culture, showing high-grade serous ovarian cancer cells under differ-
ent culture conditions. Lindsay J show that loss of CBX2 is relevant. It is associated with decreased proliferation, 
increased blood sensitivity and decreased stem cell numbers11. Anoikis-related genes are genes that control cell-
ECM communication, which avoid cell proliferation and implantation in inappropriate locations during tissue 
formation and maintenance. Moreover, they also involve cancer cell anoikis tolerance, invasive ability and TME 
attributes, which are associated with tumor clinical characteristics, prognosis and efficacy. Therefore, they are 
candidate biomarkers or targets for tumors.

The corresponding information of the COAD samples was obtained by mining the TCGA database. We then 
used Genecards to isolate anoikis-related genes. A prediction model of anoikis-related genes in COAD was then 
constructed and validated using the GEO database. Simultaneously, immune infiltration and drug susceptibil-
ity tests were performed. The purpose of this study is to construct prognostic markers related to COAD and 
investigate their potential mechanism of action and clinical value in COAD and make recommendations to find 
new treatment options.

Materials and methods
Acquisition and processing of data and DEGs identification.  Expression sets and clinical informa-
tion [gender, age, OS, PFS, TNM stage] (expression was measured as raw read counts using STAR, then con-
verted to transcripts per million (TPM). Table 1 listed the baseline clinical characteristics of TCGA-COAD. Only 
COAD patients with survival information were included in this study. Anoikis-related genes were obtained from 
Gendcards (https://​www.​genec​ards.​org/).

Using the Limma package12, a linear model of the microarray data was used to distinguish DEGs from COAD 
patients and healthy controls in an integrated microarray expression matrix. The false discovery rate (FDR) 
was examined using the Benjjamini-Hochberg method. A P-value < 0.05, and |log2 (fold change)|(|logFC|) ≥ 1 
indicates a significant difference. Heatmaps and volcano maps were created using R. ComplexHeatmap13,14 and 
ggplot2 package.

Gene enrichment analysis.  To investigate possible related pathways of COAD, we performed Gene Enrich-
ment Analysis (GSEA) using the “GOSemSim” package15,16, “clusterProfiler” package17, “biomaRt” package18,19 
and “stringi” package in R.GO Enrichment and KEGG pathway analysis. The “ggplot2” package displays the 
results. Based on the associated anoikis, we used the Genecards online resource to exclude genes that might play 
a role in anoikis. The screening criteria were as follows: category = “encoded protein” score cut-off > 0.15.

Colon adenocarcinoma CNVs analysis.  Whole exome/genome sequence (WXS/WGS) somatic muta-
tion COAD data were downloaded from the GDC-TCGA-COAD project to the UCSC-Xena server. The Utect2 
algorithm assigns high confidence to somatic variants and detects other germline mutations. Tumors were 
mapped in descending order of mutation using the R package “maftools”20.

Construction of risk score model and validation.  A total of 426 samples will be selected from the 
TCGA-COAD dataset as the training cohort. In the training cohort, 189 anoikis-related genes were screened 
based on univariate Cox analysis. Thirteen potential prognostic genes were then screened using the Least Abso-
lute Shrinkage Regression and Selection Operator (LASSO). Finally, only 7 genes were included in the risk 
signature according to the results of the multivariate cox regression. The risk score was calculated according 
to the gene expression level and the regression coefficient with “glmnet” package21, and the formula was risk 
score = coefficient Σ(Genei) × expression(Genei). According to the principle of median risk score, the OS of this 
group was divided into high-risk group and low-risk group, and the “Survivor” R package was run for analysis. 
We then used KM survival curves and ROC curves to evaluate their value in predicting OS survival prognosis 
with “pROC” package22. In addition, risk score histograms, survival status scatterplots, and DEGs distribution 
heatmaps were generated for both groups of patients. Survival curves from the validation set (GSE39582, 1 ≤ OS.
time ≤ 120, mouths) were used to assess the reliability of the validated group risk assessment model. The main 
clinical features of GSE39582 (1 ≤ OS.time ≤ 120, mouths) are shown in Table 2. The 1-, 3-, and 5-year survival 
rates of COAD patients were also predicted from the training and validation sets.

Immune cell infiltration analysis.  We extracted expression data from 22 tumor-infiltrating immune cells 
using the Cybersort platform. We then analyzed this using sample OS data and implemented algorithms using 
CyberSort to estimate the proportion of different immune cells among OS cells. The algorithm is based on Monte 
Carlo sampling, providing scattered p-values for each sample.

Drug sensitivity analysis.  The “OncoPredict” R package23 was used to search susceptibility data in the 
GDSC2 database and to predict drug COAD responses in the GDSC2 database. Spearman correlation analysis 
was then performed to obtain drugs associated with risk outcomes and plot the correlation scatterplot with 
“ggstatsplot” package.

https://www.genecards.org/
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Immunohistochemistry for model genes.  We performed IHC using clinical samples of COAD to con-
firm the expression differences of model genes in COAD clinically. For IHC experiments, we collected 70 tissue 
sections (five samples per COAD and tumor-adjacent normal tissue). We rehydrated the sections with ethanol 
and dewaxed them with xylene. Then we treated them with 3% H2O2 for 20 min to block endogenous peroxidase 
and with 1 mM EDTA to retrieve the antigen. We incubated the sections with 1:50 diluted model genes antibody 
(From: SANTA CRUZ BIOTECHNOLOGY) at 4 °C overnight. After incubation with a 2-step plus PolyHRP 
Anti-Mouse/Rabbit IgG Detection System (PV-9000, Zhongshan Jinqiao Biotechnology Company, Beijing, 
China), we visualized the sections with diaminobenzidine (DAB; Zhongshan Jinqiao Biotechnology Company, 
Beijing, China), counterstained them with hematoxylin, and dehydrated them. We scanned the sections using a 
Zeiss microscope. We measured and quantified staining intensity using the ImageJ plug-in “IHC Toolbox” and 
GraphPad Prism version 7 software, respectively. We considered p-value < 0.05 as significant.

Statistical analysis.  In this experiment, all statistical analyzes were performed using R 4.2.2. The Wil-
coxon test was used to compare nonparametric data from two independent samples. Parametric data were ana-
lyzed by t test and one-way ANOVA. A P value <  0.05 was considered statistically significant (*p-value < 0.05; 
**p-value < 0.01; ***p-value < 0.001). Related R packages include ggplot2, ggpubr, survival, survminer, and oth-
ers taken from the Bioconductor package or the R package. P < 0.05 was considered statistically significant for 
each analysis.

Table 1.   Clinical characteristics of COAD samples from the TCGA database.

Basic characteristics Variables Overall (N = 426)

Age (years) Median (1st Qu, 3rd Qu) 68.00 (58.00, 77.00)

Sex
Male 229 (53.8%)

Female 197 (46.2%)

History of colon polyps

Yes 127 (29.8%)

No 234 (54.9%)

Unknown 65 (15.3%)

History of neoadjuvant treatment
Yes 3 (0.7%)

No 423 (99.7%)

Histological type

Colon adenocarcinoma 363 (85.2%)

Colon mucinous adenocarcinoma 59 (13.9%)

Unknown 4 (0.9%)

TNM stage

Stage I 75 (17.6%)

Stage II 167 (39.2%)

Stage III 124 (29.1%)

Stage IV 60 (14.1%)

T stage

T1 11 (2.6%)

T2 74 (17.4%)

T3 292 (68.5%)

T4 49 (11.5%)

N stage

N0 251 (58.9%)

N1 101 (23.7%)

N2 74 (17.4%)

M stage
M0 365 (85.7%)

M1 61 (14.3%)

Longest dimension(cm)

 ≤ 1 cm 125 (29.3%)

 > 1 cm 124 (29.1%)

Unknown 177 (41.6%)

Residual tumor

R0 310 (72.8%)

R1 4 (0.9%)

R2 21 (4.9%)

Rx 91 (21.4%)

Survival status
Alive 334 (78.4%)

Dead 92 (21.6%)

OS.time (mouths) Median (1st Qu, 3rd Qu) 13.23 (23.07,36.50)

Progression-free-survival status
No progressive disease 311 (73.0%)

Progressive disease 115 (27.0%)

PFS.time (mouths) Median (1st Qu, 3rd Qu) 20.28 (12.22,33.52)
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Results
Identification of DEGs and GSEA analysis.  Figure 1 is the flow chart of our study. Based on the Limma 
package and previously defined thresholds, a total of 3335 DEGs that could be further enriched were identified, 
of which 1547 were downregulated and 1788 were upregulated (Supplementary Table S1). Figure 2a shows the 
DEG volcano map and Fig. 2b shows the heatmap.

First, GSEA analysis is performed to examine the most relevant genetic ontologies. As shown in Fig. 2c,d 
(Supplementary Table S2), “adaptive immune response”, “antigen binding”, “immunoglobulin complex” and 
“immunoglobulin receptor binding” were the most abundant terms in Gene Ontology. GSEA pathway accumula-
tion analysis showed that DEGs were enriched in pathways such as “colon cancer”, “mineral absorption”, “hippo 
pathway” and “IL-17 pathway” (Fig. 2e,f) (Supplementary Table S3).

GO and KEGG analysis as well as CNVs analysis.  GO analysis demonstrated that these 3335 DEGs 
were primarily enriched in complement activation, B cell receptor signaling pathway, and humoral immune 
response mediated by circulating immunoglobulin in the biological process, immunoglobulin complex, external 

Table 2.   Clinical characteristics of COAD samples from the GSE39582 (1 ≤ OS.time ≤ 120, mouths).

Basic characteristics Variables Overall (N = 491)

Age (years) Median (1st Qu, 3rd Qu) 68.10 (58.00, 76.00)

Sex
Male 268 (54.6%)

Female 223 (45.4%)

Cin.status

 +  311 (63.3%)

– 102 (20.8%)

Unknown 78 (15.9%)

Cimp.status

 +  83 (16.9%)

– 354 (72.1%)

Unknown 54 (11.0%)

TNM stage

Stage I 30 (6.1%)

Stage II 219 (44.6%)

Stage III 183 (37.3%)

Stage IV 59 (12.0%)

T stage

T1 9 (1.8%)

T2 43 (8.8%)

T3 332 (67.6%)

T4 107 (21.8%)

N stage

N0 264 (53.8%)

N1 124 (25.2%)

N2 103 (21.0%)

M stage
M0 431 (87.8%)

M1 60 (12.2%)

Kras.mutation

WT 282 (57.4%)

M 188 (38.3%)

Unknown 21 (4.3%)

Tp53.mutation

WT 137 (27.9%)

M 162 (33.0%)

Unknown 192 (39.1%)

Braf.mutation

WT 398 (81.1%)

M 47 (9.6%)

Unknown 46 (9.3%)

MMR.status

pMMR 389 (79.2%)

dMMR 69 (14.1%)

Unknown 33 (6.7%)

Chemotherapy.adjuvant

 +  205 (41.8%)

– 270 (55.0%)

Unknown 16 (3.2%)

Survival status
Alive 320 (65.2%)

Dead 171 (34.8%)

OS.time (mouths) Median (1st Qu, 3rd Qu) 50.00 (26.00,75.00)
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side of plasma membrane, and collagen-containing extracellular matrix in the cellular components, antigen 
binding, glycosaminglycan binding, and extracellular matrix structural constituent in the molecular functions 
(Fig. 3a,b) (Supplementary Table S4). The KEGG pathway enrichment analysis indicated that these DEGs were 
enriched in the pathways such as PI3K-Akt signaling pathway, Cytokine-cytokine receptor interaction an Viral 
protein interaction with cytokine and cytokine receptor (Fig. 3c,d) (Supplementary Table S5).

According to the classification of mutations, we found that missense mutations were the most common 
(Fig. 3e). SNPs were the most common type of variation, with C > T (112,505) ranking first in the single nucleo-
tide variation (SNV) category. We found a higher tumor mutational burden in COAD (Fig. 3f). We also found 
that APC (72%) and TP53 (55%) were more frequently mutated than other genes (Fig. 3g). We found the variant 
allele frequencies for the top 10 genes in COAD (Fig. 3h).

Filter anoikis‑realted genes.  We excluded genes that might play a role in anoikis using the online resource 
Genecards. Screening criteria: category = “encoding protein”, score cutoff > 0.15 (Supplementary Table S6).

Then, we take the intersection of DEGs and the anoikis-related genes (Supplementary Fig. S1, Table S7). Next, 
we performed univariate COX hazard analysis on 187 genes, with OS as the outcome measure (Supplementary 
Table S8), with PFS as the outcome measure (Supplementary Table S9). We selected 25 genes to draw the forest 
plot of Univariate Cox regression (Fig. 4a,b). Afterwards, we performed stepwise backward regression on the 
results separately. The variables of the three different models are variables screened by Univariate Cox (p < 0.05), 
variables screened by All-Subsets Regression (BSR) (Supplementary Fig. S2), and variables screened by LASSO 
regression. After comparing the three methods (Supplementary Fig. S3), 7 genes were finally selected to draw 
the forest plot of multicox regression (Fig. 4c,d).

Establishment of the seven‑gene risk signature.  We performed Lasso algorithm on these 7 DEGs 
and regarded them as candidate genes (Fig. 5a,b). Generation of risk scores using seven anoikis-related genes 
to predict survival and prognosis in COAD patients (Fig.  5c). The risk score = − 0.52021*NAT1 + 0.18218*E
EF1A2 + (–  0.39270*CDC25C) + 0.28190*TIMP1 + (−  0.11126*MMP3) + 0.21511*PBK + (−  0.19454*ATP2A
3). KM analysis showed that the training set has a high risk score. Corresponded with poorer overall sur-
vival (HR = 2.78 (1.97–3.93), log-rank p = 6.45*10–9) and poorer progress free survival (HR = 2.13 (1.58–2.88), 

Figure 1.   Flow chart of this study.
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log-rank p = 7.20*10–7) (Figs.  5d,e, Supplementary Table  S10). Seven genetic risk signatures could effectively 
divide patients into a high-risk group and a low-risk group with an intermediate risk score. Therefore, we can 
intuitively conclude that the patients who died basically happened first were higher ranking (higher risk score) 
(Fig. 5d–g). We draw the distribution of gene expression in the 426 COAD samples (Fig. 6a). We also applied 
a risk score covering all relevant genes to estimate OS and PFS after 1, 3, and 5 years (Fig. 6b,c). The prediction 
accuracy evaluated by AUCs was reported to be 0.69, 0.66 and 0.66 in the 1-year, 3-year and 5-year ROC curves, 
respectively. The same analyses were conducted for the PFS outcome.

Figure 2.   DEGs screening in integrated TCGA database and GSEA analysis. (a) Volcano plot of COAD samples 
from the TCGA database, Data points in red represent up-regulated, and green represent down-regulated genes, 
(b) Heatmap of DEGs identified in integrated microarray. Legend on the top right indicates the change of the 
genes, (c,d) GO results of GSEA analysis, (e,f) KEGG results of GSEA analysis.
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Figure 3.   Enrichment Analyses of the DEGs from exprset and CNVs analysis in COAD. (a,b) Results of 
GO analysis with DEGs, (c,d) Results of KEGG analysis with DEGs, (e–h) the CNV and mutation frequency 
in COAD. *p < 0.01, ***p < 0.001; COAD colon adenocarcinoma, SNP single nucleotide polymorphism, INS 
insertion, DEL deletion.
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Nomogram development and validation for COAD.  To facilitate the clinical application of the pre-
dictive model, we integrated the clinical information and genetic characteristics of TCGA patients, and con-
structed a nomogram using a multivariate Cox regression model (Fig. 6d,e). Use the discrimination and calibra-
tion method to identify and calibrate OS and PFS results. The c-index for OS was 0.775 and the c-index for PFS 
was 0.742 (Supplementary Table S11), reflecting the superior predictive power of the nomogram. Furthermore, 
standard curves showed good agreement between predicted and observed OS or PFS between 1, 3, and 5-year 
survival (Fig. 6f,g).

Validation of the 7 genes risk score model based on GEO dataset.  We select GSE39582 (1 ≤ OS.
time ≤ 120, mouths) as the validation data set. We plotted a heatmap of the gene expression distribution of the 
532 COAD samples (Fig. 7a). KM analyses showed that the validation set has a high risk score corresponded 
with poorer overall survival (Fig. 7b). The predictive accuracies of AUC results were 0.718, 0.742, and 0.5695 for 
the 1-year, 3-year, and 5-year ROC curves, respectively (Fig. 7c). We plot scatterplots and histograms to describe 
the survival status and risk score distributions of these COAD samples (Fig. 7d).

Immune analysis.  We analyzed genes related to the immune system, looked for genes that were differen-
tially expressed and drew boxplots. IRF3 and VEGFB expression increased in the high-risk group and vice versa 
(Fig. 8a). The distribution of these genes in the two group of COAD samples is shown in Fig. 8b. The occurrence 
and development of COAD is affected by the tumor microenvironment, and T cells, memory CD4 cells, M0 
macrophages, and plasma cells are the most common tumor-infiltrating immune cells (Fig. 8c,d). As a result of 
the immunological analysis, statistically significant differences in the frequencies of six types of immune cells 
were observed between the favorable and poor prognosis groups (Fig. 8e–g). It has been suggested that the two 
groups differed in the ratio of mesenchymal cells to immune cells, possibly resulting in different tumor purities. 
These results suggest that immune infiltration and immune microenvironment are important for OS in COAD 
patients.

Correlation of risk score with drug sensitivity.  We evaluated the value of risk scores in predicting 
drug sensitivity in different cancer types. We tested 30 drugs in the GDSC2 database whose risk scores were 
significantly associated with drug sensitivity according to Spearman correlation analysis. The risk score is nega-
tively sensitive to five drugs including Uprosertib, Venetoclax, Fludarabine, Buparlisib, and Osimertinib, and 
positively correlated with sensitivity to 25 drugs, including Oxaliplatin, 5-Fluorouracil, Cisplatin, Gemcitabine, 
Camptothecin, Irinotecan and others (Fig. 9a,b,f–h). In conclusion, the establishment of the risk score helps us 

Figure 4.   Forest plots for anoikis-related genes from univariate and multivariate cox proportional hazards 
mode. (a) The effect of 25 anoikis-related genes on the overall survival of TCGA datasets, (b) The effect of 25 
anoikis-related genes on the progress free survival of TCGA datasets, For (c) OS and (d) PFS, hazard ratios and 
p-value of the constituents involved in multivariate Cox regression in COAD.
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Figure 5.   Construction of the risk score. (a,b) The least absolute shrinkage and selection operator (LASSO) 
method of anoikis-related genes associated with prognosis, (c) The risk score for predicting the survival and 
prognosis of patients with COAD, (d) Kaplan Meier plot of the anoikis signature and overall survival, (e) Kaplan 
Meier plot of the anoikis signature and progress-free survival, (f) distribution of risk score, overall survival 
status, (g) distribution of risk score, progress-free survival status.
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Figure 6.   Nomogram development and validation. (a) Heatmap of model-genes identified, Legend on the top 
right indicates the characteristic of the samples, (b) ROCs for 1-year, 3-year and 5-year survival prediction, (c) 
ROCs for 1-year, 3-year and 5-year progression-free survival prediction. Nomogram to predict the 1-year, 3-year 
and 5-year (d) OS and (e) PFS rate of COAD patients. Calibration curve for the (f) OS and (g) PFS nomogram 
model in COAD. A dashed diagonal line represents the ideal nomogram.
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Figure 7.   Validation of the seven-gene Signature. (a) Heatmap of model-genes identified in validation dataset, 
Legend on the top right indicates the characteristic of the samples, (b) Kaplan Meier plot of the anoikis 
signature and overall survival in validation dataset. (c) ROCs for 1-year, 3-year and 5-year survival prediction in 
validation dataset. (d) Distribution of risk score, overall survival status.
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Figure 8.   Immune analysis. (a,b) Comparisons of immune-related genes between the two risk groups in COAD 
patients. (c,d) Immune infiltration of 22 dfferent types of immune cells. (e) Immune cell component between 
high-risk group and low-risk group. (f) The landscape of immune infiltration in two risk groups for COAD 
patients. (g) Boxplot visualizing differentially immune infiltration. *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 9.   Drug sensitivity. (a) Comparisons of 6 COAD chemotherapy drugs on GDSC2 database. (b) 
Assessing drug sensitivity of COAD tumor based on the risk score. (c–e) Boxplot visualizing differentially drugs. 
(f–h) The correlation analysis between risk score and the IC50 of 3 chemotherapy drugs.
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consider appropriate and effective treatment strategies. The IC50 of three drugs in the high-risk group was lower 
than low-risk group (Fig. 9c–e). These three drugs are Camptothecin, Irinotecan, Gemcitabine, which indicates 
that they are expected to become potential drugs for the treatment of COAD.

Expression of model genes in clinical samples.  Compared with tumor adjacent tissues (Fig.  10), 
EEF1A2, PBK and TIMP1 showed significant upregulation in colon adenocarcinoma, while ATP2A3, CDC25C, 

Figure 10.   Model genes expression in COAD validated by clinical samples. Representative images and 
quantification of IHC staining with (a) ATP2A3, (b) CDC25C, (c) EEF1A2, (d) TIMP1, (e) NAT1, (f) PBK, and 
(g) MMP3.Magnification: 20x. p-values were obtained by unpaired t test. All data are represented by mean ± SD.
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MMP3 and NAT1 showed significant downregulation. This outcome, is consistent with the results of the risk 
score model established by us.

Discussion
Anoikis is a type of programmed cell death that occurs when cells lose their proper extracellular matrix, thereby 
disrupting integrin attachment24. This is an important mechanism to prevent dysplastic cells from proliferating 
and attaching to inappropriate substrates25. Anoikis is also an important body defense that prevents detached cells 
from attaching to new substrates in the wrong place, thereby preventing their growth and shrinkage26. Anoikis 
is critical for tissue homeostasis and development as it prevents colonization elsewhere by detached epithelial 
cells27. Typically, detachment of normal epithelial cells results in loss of key survival factors and programmed 
cell death, termed anoikis28. Resistance to anoikis, a specific mode of apoptosis activated during cell division, 
is a critical step in cancer metastasis29. Several studies have shown that the initiation of apoptosis depends on 
both intrinsic and extrinsic signaling pathways30. Anoikis can be activated by various intracellular signals, such 
as DNA damage and endoplasmic reticulum stress, and mitochondria play an important role in the regulation 
of apoptosis31. This impaired function of hypoxia is a hallmark of tumor cells and can lead to tumor invasion 
and migration, distant metastasis, and drug resistance32–34. Anoikis is now of particular interest to the scien-
tific community because anchorage-dependent growth and epithelial-mesenchymal transition, two properties 
associated with Anoikis resistance, are key steps in tumor progression and dissemination of metastatic cancer 
cells35–39. However, the effects of anoikis-related genes on COAD invasion, migration and drug resistance and 
their roles in predicting COAD prognosis are rarely studied. Malagobadan S found that the overexpression of 
this novel miRNA, miR-6744-5p promotes insomnia in Luminal A and triple-negative breast cancer cell lines 
and directly targets the NAT1 enzyme40. Cai Jiaqin &’s research found that the expression of NAT1 was signifi-
cantly reduced in colorectal cancer, which was independently related to the poor prognosis of colorectal cancer 
patients. NAT1 can exert anti-tumor activity by inhibiting the phosphorylation of pi3k/Akt/mTOR signaling 
pathway41. Dixie E found that expression of EEF1A2 did not alter sensitivity to anoikis in SK-OV-3 cells42. As an 
epithelial-mesenchymal transition gene, EEF1A2 was found to be strongly associated with the clinical outcome 
of COAD and has been used as a biomarker and therapeutic drug target in the literature43,44. Cui Tang’ research 
results showed that HOXB13 plays a tumor-promoting role in HCC cells, promotes HCC drug resistance by up-
regulating CDC25C, and improves the ability of cells to resist anoikis45. These studies found that CDC25C may 
be an important target gene in patients with COAD because they are related to metabolism, cell cycle and tumor 
progression46,47. Mariana Toricelli found that Timp1 confers cell survival through activation of the PDK1 path-
way and that Timp1 and AKT cooperate to confer resistance to anoikis in metastatic melanoma cells48. TIMP1 
stimulates cell proliferation and has anti-apoptotic functions49. In colorectal cancer, upregulation of TIMP1 in 
tumor tissue compared with normal tissue50 is considered to be an independent prognostic factor for disease 
free survival51. MMP3 (Matrix Metallopeptidase 3) is a protein-coding gene, and MMP3-related diseases include 
Coronary Heart Disease 6 and conjunctivochalasis. Its associated pathways include downstream GPCR signaling 
and trimerization of collagen chains. Akira Koshino demonstrated that PBK is an immunohistochemical marker 
of good clinical outcome in CRC patients. PBK-mediated upregulation of cell proliferation and inhibition of 
CRC cell migration and invasion have also been demonstrated52. Overexpression of the PBK gene is associated 
with tumorigenesis53. Immunohistochemical analysis of PBK/TOPK expression can be used as an independent 
marker for the prognosis of CRC patients54,55.ATP2A3 encodes a SERCA pump that pumps Ca2+ into the lumen 
of the ER. One study showed that Serca3 expression is regulated by the proximal ATP2A3 promoter during the 
induction of epithelial cell differentiation56. Previous studies have shown low or no expression of SERCA3 in 
colon cancer cell lines57. Therefore, increased expression of SERCA3 in gastrointestinal cancer may be a prognos-
tic biomarker. Brouland et al. We found that SERCA3 levels were inversely correlated with poorly differentiated 
epithelial cells. Furthermore, SERCA3 expression is lower in adenocarcinomas58. These results suggest a strong 
correlation between transition from adenomatous polyposis to adenocarcinoma, COAD development, and aber-
rant SERCA3 expression59. Previous studies have shown that these model genes are related to the occurrence 
and progression of most tumors, which is consistent with our research results.

Here, we demonstrate global genetic alterations associated with anoikis at the gene and transcriptional levels 
and demonstrate the cross-correlation of COAD. We developed a risk assessment model to predict prognosis and 
patient response to immunotherapy and targeted therapies. Examining the differential expression of anoikis-
related genes in COAD will not only improve our understanding of the aggressiveness of COAD, but will also 
help in the development of more personalized and accurate immunotherapy regimens. In this experiment, we 
constructed a prognostic COAD risk assessment model based on the differential expression of anoikis-related 
genes. We investigated the value of risk scores in predicting the response of COAD to immunotherapy and ana-
lyzed the differential expression of immune cells in high-risk and low-risk cancers. The results demonstrate the 
usefulness of using this risk assessment model to predict patient response to immunotherapy. Examining risk 
score-based treatment outcomes in COAD patients, we found an interaction between risk score and drug sensitiv-
ity. Regulation of apoptosis, signal transduction and metabolism play an active role in the treatment of COAD.

Conclusion
In this study, we systematically generated and evaluated a COAD risk score based on seven anoikis-related genes. 
Systematic assessment of risk scores contributes to a better understanding of invasiveness and leads to more 
individualized and precise treatment strategies. Our model showed good performance in both the training and 
validation datasets and was further supported by immunohistochemistry.

Our study has profound implications for future research and clinical practice. Our model can also enable the 
identification of potential therapeutic targets and biomarkers for colon adenocarcinoma. In addition, our model 
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can enable the classification of patients into different risk levels and the customization of treatment options based 
on their individual prognosis. Our study fosters the progress of precision oncology and personalized medicine 
for colon adenocarcinoma patients.

Data availability
TCGAData Poral: https://​portal.​gdc.​cancer.​gov/ (accessed on 15March 2022); GEO Datasets: https://​www.​
ncbi.​nlm.​nih.​gov/​gds/ (accessed on 18 December 2022); UCSC Xena: https://​xenab​rowser.​net/ (accessed on 15 
December 2022).
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