Table 4 Experimental datasets used in the present novel ML models after considering outlier’s removal.

From: An efficient machine learning approach for predicting concrete chloride resistance using a comprehensive dataset

Reference

Count

W/B

(–)

Cement

(kg/m3)

Slag

(kg/m3)

FA

(kg/m3)

SF

(kg/m3)

Fine aggregate

(kg/m3)

Coarse aggregate

(kg/m3)

SP

(% by binder wt.)

Fresh density

(kg/m3)

\({f}_{c}\)

(MPa)

\({D}_{nssm}\)

Costa & Appleton (1999)64

24

0.30–0.50

300–500

0

0

0–21.5

0–822

1131–1704

0–0.02

 × 

34–66

0.88–4.83

Thomas & Bamforth (1999)65

18

0.48–0.66

110–288

0–255

0–98

0

585–660

1240–1305

0

 × 

37.9–49.6

0.59–10

Hao–bo & Guo–zhi (2004)66

16

0.36

192–480

0–147

0–216

0–24

614–696

1061–1147

0.9–1.0

 × 

49.1–63.1

0.74–7.0

Alizadeh et al. (2008)67

2

0.5

370–400

0

0

0–30

778

956

0–0.01

2355–2370

39–54.1

0.99–1.51

Song & Kwon (2009)31

120

0.37–0.47

178–454

0–227

0–136

0–23

745–838

921–976

0.01

 × 

 × 

0.22–6.3

Shekarchi et al. (2009)68

60

0.35–0.50

350–400

0

0

0–50

778–936

955–1022

0–0.02

2255–2467

33.9–79.6

0.22–12.54

Audenaert & De Schutter (2010)69

20

0.37–0.60

300–450

0

0–240

0

626–923

583–1225

0

 × 

40.3–74.7

0.15–13.5

Jain & Neithalath (2011)70

15

0.40

344–430

0

0–86

0–39

730–743

1050–1058

0

 × 

 × 

1.65–9.94

Liu et al. (2011)71

21

0.38–0.54

400–500

0

0

0

321–517

518–1098

0–0.65

1610–2360

31–75

6.5–19.1

Maes et al. (2013)72

4

0.50

52–350

0–295

0

0

785–791

1036–1043

0

2331–2350

 × 

3.93–8.98

Elfmarkova et al. (2015)73

4

0.40

312.3–520.6

0–312.3

0–442.5

0–468.5

1574.1

0

0.2–0.4

2150–2210

51.9–60.4

2.49–11.15

Real et al. (2015)74

86

0.35–0.55

175–450

0

0–180

0–45

703–1272.7

0–593.2

0

 × 

16.9–84.2

3.8–22.8

Bogas & Gomes (2015)75

49

0.30–0.55

270–525

0

0–735

0–36

646–1073

266.35–915.53

0–0.83

1483–2411

30.9–76.2

3.4–19.9

Liu et al. (2015)76

16

0.30–0.54

144–471

0

0

0

235–874

255–1064

0–4.17

1364–2365

 × 

4.9–19.1

Farahani et al. (2015)77

12

0.35–0.5

350–370

0

0

30–50

782–931

955–1020

0–0.02

 × 

 × 

0.33–2.7

Park et al. (2016)78

105

0.35–0.55

128–470

0–282

0–141

0

669–815

927–978

0.7–1.22

 × 

 × 

1.02–42.04

Ferreira et al. (2016)79

15

0.45–0.60

330–440

0

0

0

600–710

1240–1240

0

 × 

18.9–44.8

5.7–54

Pilvar et al. (2016)80

24

0.35–0.45

297.5–400

0

0

0–60

1037–1150

692–766

0–1.10

 × 

46–80

1.41–14.3

Choi et al. (2017)81

12

0.40–0.60

350

0

0

0

707–742

1080–1135

0

 × 

 × 

8.74–133.6

Liu et al. (2017)82

15

0.38–0.53

286–454

0

0–123

0

689–729

1041–1094

0

 × 

34.6–74.3

2.3–9.27

Shiu & Yang (2020)83

16

0.34– 0.65

168–495

0– 242

0

0

786

934

0– 2.07

 × 

231– 483

3.24– 26.7

Naito et al. (2020)84

138

0.19–0.65

13.02–2384.97

0–1284.4

0–74.2

0–29.7

27.5–904.9

26.4–1187.2

0

2176.9–2447.6

19.2–80.6

0.55–30.6

Sell Junior et al. (2021)85

6

0.45–0.65

320–400

0

0

80

587.2–640.0

880.8– 960.0

0

 × 

40.6– 74.5

0.20– 6.02

Pontes et al. (2021)86

20

0.35– 0.55

245–450

0

0– 135

0– 27

606.2– 822.2

935.1– 1154.96

0

 × 

26.1– 78.0

5.9– 25.2