Table 10 Performance of the developed models in comparison with the compositional models.

From: Enhanced machine learning—ensemble method for estimation of oil formation volume factor at reservoir conditions

Models

Train

Test

Overall

RMSE

R2

AARD (%)

RMSE

R2

AARD (%)

RMSE

R2

AARD (%)

XGBoosta

0.0046

0.9997

0.2085

0.0111

0.9980

0.4646

0.0059

0.9994

0.2598

GradientBoostinga

0.0057

0.9996

0.2948

0.0159

0.9960

0.6110

0.0078

0.9989

0.3581

CatBoosta

0.0105

0.9987

0.5293

0.0154

0.9962

0.9603

0.0114

0.9982

0.5615

Normal Random Forestb

0.0425

0.9866

0.9390

0.0541

0.9745

1.0424

0.0451

0.9844

0.9597

Normal Decision Treesb

0.0645

0.9703

1.2312

0.0430

0.9797

1.4002

0.0608

0.9717

1.2650

Normal Extra Treesb

0.0261

0.9944

1.2132

0.0342

0.9929

1.3511

0.0279

0.9940

1.2408

Lumped Random Forestb

0.0395

0.9894

0.9600

0.0250

0.9898

1.0426

0.0370

0.9895

0.9766

Lumped Decision Treesb

0.0966

0.9293

1.3422

0.0510

0.9793

1.4343

0.0893

0.9389

1.3607

Lumped Extra Treesb

0.0248

0.9954

1.1404

0.0320

0.9915

1.2785

0.0264

0.9947

1.1681

  1. aThis study.
  2. bLarestani et al.21.