Table 2 Quantitative characteristics and stability of identified multivariate linear mixture models tested on full and undersampled dataset.
Dataset size | 100% | 90% | 80% | 70% | 60% | 50% | |
---|---|---|---|---|---|---|---|
Model1 | Model detection rate [%] | *66.0 | *20.8 | 11.2 | 6.4 | 3.2 | 2.2 |
Total number of identified models | 6 | 61 | 90 | 121 | 142 | 160 | |
Height regression coefficient | 0.0049 ± 0.0002 | 0.0051 ± 0.0007 | 0.0052 ± 0.0008 | 0.0055 ± 0.0009 | 0.0059 ± 0.0011 | 0.0067 ± 0.0012 | |
Fe regression coefficient | − 0.0715 ± 0.0005 | − 0.0702 ± 0.0025 | − 0.0687 ± 0.0035 | − 0.0684 ± 0.0049 | − 0.0664 ± 0.0053 | − 0.0654 ± 0.0074 | |
Fer regression coefficient | 0.0025 ± 0.0001 | 0.0028 ± 0.0003 | 0.0031 ± 0.0004 | 0.0033 ± 0.0005 | 0.0037 ± 0.0007 | 0.0040 ± 0.0007 | |
UIBC regression coefficient | 0.0119 ± 0.0004 | 0.0129 ± 0.0010 | 0.0136 ± 0.0015 | 0.0145 ± 0.0017 | 0.0153 ± 0.0023 | 0.0165 ± 0.0028 | |
F-statistics | 38.41 ± 0.66 | 35.00 ± 2.43 | 31.54 ± 2.92 | 28.96 ± 3.31 | 25.45 ± 3.41 | 23.17 ± 3.83 | |
Root mean square error | 0.6239 ± 0.0024 | 0.6221 ± 0.0094 | 0.6206 ± 0.0128 | 0.6162 ± 0.0163 | 0.6144 ± 0.0197 | 0.6012 ± 0.0247 | |
Explained variance R2 [%] | 46.04 ± 0.42 | 46.61 ± 1.62 | 46.75 ± 2.20 | 47.95 ± 2.75 | 48.61 ± 3.28 | 50.92 ± 4.04 | |
Pearson correlation (y1 vs yp1) | 0.643 ± 0.000 | 0.646 ± 0.012 | 0.648 ± 0.017 | 0.656 ± 0.021 | 0.663 ± 0.026 | 0.677 ± 0.031 | |
Non-seizure/seizure separating threshold | 0.5744 ± 0.0317 | 0.6853 ± 0.0793 | 0.7355 ± 0.1091 | 0.8442 ± 0.1372 | 0.9531 ± 0.1674 | 1.0655 ± 0.2197 | |
Training: sensitivity | 95.49 ± 1.61 | 93.90 ± 4.98 | 95.51 ± 4.60 | 92.68 ± 5.92 | 91.39 ± 6.18 | 93.40 ± 6.53 | |
Training: specificity | 69.43 ± 1.15 | 70.90 ± 4.15 | 68.95 ± 5.25 | 72.24 ± 6.39 | 73.91 ± 7.31 | 71.25 ± 8.07 | |
Testing: sensitivity | 87.32 ± 15.00 | 89.65 ± 12.12 | 84.72 ± 12.09 | 80.26 ± 13.38 | 83.27 ± 12.29 | ||
Testing: specificity | 67.36 ± 18.25 | 65.29 ± 14.61 | 66.71 ± 10.79 | 67.45 ± 10.67 | 66.43 ± 9.29 | ||
Model2 | Model detection rate [%] | *100.0 | *72.0 | *50.9 | *24.9 | 14.2 | 6.8 |
Total number of identified models | 1 | 44 | 64 | 127 | 160 | 209 | |
Age regression coefficient | − 0.0050 ± 0.0002 | − 0.0052 ± 0.0007 | − 0.0056 ± 0.0009 | − 0.0060 ± 0.0010 | − 0.0064 ± 0.0011 | − 0.0072 ± 0.0014 | |
Height regression coefficient | 0.0036 ± 0.0002 | 0.0036 ± 0.0005 | 0.0038 ± 0.0006 | 0.0040 ± 0.0007 | 0.0043 ± 0.0008 | 0.0048 ± 0.0010 | |
satFe regression coefficient | − 3.2236 ± 0.0455 | − 3.1911 ± 0.2123 | − 3.1108 ± 0.2796 | − 3.0829 ± 0.3491 | − 2.9630 ± 0.3964 | − 2.8432 ± 0.4344 | |
UIBC regression coefficient | 0.0093 ± 0.0003 | 0.0094 ± 0.0011 | 0.0098 ± 0.0015 | 0.0100 ± 0.0016 | 0.0108 ± 0.0019 | 0.0113 ± 0.0020 | |
F− statistics | 28.82 ± 0.63 | 25.12 ± 2.25 | 22.85 ± 2.59 | 21.00 ± 3.00 | 19.20 ± 3.24 | 17.28 ± 3.37 | |
Root mean square error | 0.3620 ± 0.0019 | 0.3638 ± 0.0076 | 0.3642 ± 0.0097 | 0.3601 ± 0.0123 | 0.3558 ± 0.0150 | 0.3509 ± 0.0175 | |
Explained variance R2 [%] | 47.38 ± 0.54 | 47.47 ± 2.10 | 48.01 ± 2.69 | 49.13 ± 3.41 | 51.02 ± 4.08 | 53.10 ± 4.60 | |
Pearson correlation (y2 vs yp2) | 0.660 ± 0.000 | 0.662 ± 0.015 | 0.667 ± 0.020 | 0.674 ± 0.026 | 0.691 ± 0.031 | 0.704 ± 0.034 | |
Non− seizure/seizure separating threshold | 0.3495 ± 0.0261 | 0.3657 ± 0.0899 | 0.3779 ± 0.1170 | 0.4135 ± 0.1332 | 0.4652 ± 0.1607 | 0.4906 ± 0.1730 | |
Training: sensitivity | 83.53 ± 1.04 | 81.15 ± 4.19 | 83.30 ± 4.35 | 80.72 ± 5.91 | 82.28 ± 6.42 | 85.87 ± 6.79 | |
Training: specificity | 82.89 ± 0.92 | 86.06 ± 4.14 | 84.81 ± 4.94 | 88.90 ± 5.16 | 89.72 ± 5.66 | 88.30 ± 7.02 | |
Testing: sensitivity | 75.60 ± 18.66 | 75.50 ± 13.62 | 71.20 ± 12.15 | 70.69 ± 10.81 | 72.76 ± 10.10 | ||
Testing: specificity | 81.14 ± 15.07 | 78.56 ± 12.53 | 81.53 ± 9.97 | 79.77 ± 10.16 | 77.35 ± 11.19 | ||
Model3 | Model detection rate [%] | *51.5 | 28.4 | 10.4 | 4.6 | 2.0 | 1.1 |
Total number of identified models | 15 | 73 | 203 | 293 | 383 | 506 | |
Height regression coefficient | − 0.0072 ± 0.0005 | − 0.0070 ± 0.0007 | − 0.0079 ± 0.0011 | − 0.0080 ± 0.0012 | − 0.0083 ± 0.0012 | − 0.0088 ± 0.0012 | |
HGB regression coefficient | 0.0129 ± 0.0009 | 0.0136 ± 0.0013 | 0.0153 ± 0.0022 | 0.0158 ± 0.0024 | 0.0171 ± 0.0028 | 0.0179 ± 0.0028 | |
satFe regression coefficient | 6.1796 ± 0.5323 | 6.1236 ± 0.8455 | 6.8889 ± 1.3212 | 7.0798 ± 1.4197 | 7.8790 ± 1.7529 | 9.1360 ± 2.7797 | |
F-statistics | 8.24 ± 0.83 | 7.41 ± 1.30 | 8.79 ± 2.07 | 8.48 ± 2.31 | 8.60 ± 2.54 | 10.17 ± 3.67 | |
Root mean square error | 0.4182 ± 0.0055 | 0.4130 ± 0.0095 | 0.4068 ± 0.0148 | 0.3917 ± 0.0178 | 0.3799 ± 0.0218 | 0.3615 ± 0.0300 | |
Explained variance R2 [%] | 26.04 ± 1.93 | 26.37 ± 3.35 | 32.33 ± 4.90 | 35.13 ± 5.75 | 40.08 ± 6.62 | 47.23 ± 8.58 | |
Pearson correlation (y3 vs yp3) | 0.441 ± 0.005 | 0.457 ± 0.033 | 0.495 ± 0.046 | 0.533 ± 0.053 | 0.577 ± 0.057 | 0.630 ± 0.067 | |
Non-recurrent/recurrent seizure separating threshold | 1.4001 ± 0.0999 | 1.4947 ± 0.1410 | 1.6849 ± 0.2406 | 1.7372 ± 0.2945 | 1.9210 ± 0.3366 | 2.0830 ± 0.3144 | |
Training: sensitivity | 83.86 ± 7.67 | 86.15 ± 10.19 | 88.11 ± 11.57 | 91.45 ± 10.93 | 92.50 ± 8.92 | 92.03 ± 9.59 | |
Training: specificity | 58.44 ± 6.69 | 60.50 ± 6.80 | 64.23 ± 9.26 | 66.54 ± 10.81 | 69.81 ± 10.25 | 76.00 ± 10.77 | |
Testing: sensitivity | 73.33 ± 44.24 | 69.80 ± 30.16 | 74.70 ± 28.62 | 74.29 ± 26.08 | 69.81 ± 24.57 | ||
Testing: specificity | 45.18 ± 27.23 | 44.85 ± 19.98 | 42.13 ± 17.47 | 46.57 ± 14.52 | 49.61 ± 12.24 |