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Computing all persistent subspaces 
of a reaction‑diffusion system
Stephan Peter 1,5, Linus Woitke 2,5, Peter Dittrich 2* & Bashar Ibrahim 2,3,4*

An algorithm is presented for computing a reaction-diffusion partial differential equation (PDE) system 
for all possible subspaces that can hold a persistent solution of the equation. For this, all possible sub-
networks of the underlying reaction network that are distributed organizations (DOs) are identified. 
Recently it has been shown that a persistent subspace must be a DO. The algorithm computes the 
hierarchy of DOs starting from the largest by a linear programming approach using integer cuts. The 
underlying constraints use elementary reaction closures as minimal building blocks to guarantee 
local closedness and global self-maintenance, required for a DO. Additionally, the algorithm delivers 
for each subspace an affiliated set of organizational reactions and minimal compartmentalization 
that is necessary for this subspace to persist. It is proved that all sets of organizational reactions of a 
reaction network, as already DOs, form a lattice. This lattice contains all potentially persistent sets of 
reactions of all constrained solutions of reaction-diffusion PDEs. This provides a hierarchical structure 
of all persistent subspaces with regard to the species and also to the reactions of the reaction-diffusion 
PDE system. Here, the algorithm is described and the corresponding Python source code is provided. 
Furthermore, an analysis of its run time is performed and all models from the BioModels database 
as well as further examples are examined. Apart from the practical implications of the algorithm the 
results also give insights into the complexity of solving reaction-diffusion PDEs.

Understanding a system and predicting its behavior is in general a complex problem because a system’s behavior 
as a whole results in general from many non-linear interactions of its components. A particular challenge is to 
infer a system’s behavior from its structure. In this work the structure of a system is described as a reaction net-
work, that is a set of reaction rules over a set of molecular species1. Reaction network models are not only used 
in chemistry but also in various other disciplines such as biology and genetics2–6, physics7, virology8–11, computer 
science12, ecology13, economy14, or even social sciences15.

Chemical organization theory offers a way to relate the structure of a reaction network to the potential 
dynamics of a related dynamical system16,17. In particular, every fixed point of a system of ordinary differential 
equations is an organization16,18. The basic theory does not consider a spatial or temporal distribution of the 
system’s components. Nevertheless, the eukaryotic cell, for example, accomplishes its dynamics through a spatial 
arrangement of its compartments. Different parts of the cell perform different reactions to create an overall cycle 
attaining self-maintenance. The need for such separations can be seen easily upon the effect of the peroxisomes, 
which isolate strong oxidants to avoid harming any functioning organic material. Spatial separation also oper-
ates at many other scales, such as in the development of different organs in multi-cellular organisms. On the 
other hand, temporal separation can be seen in many models exhibiting periodical behavior. Synchronization 
of several transitive states can lead to a stable solution19.

To incorporate such spatial and temporal separation in chemical organization theory, Peter et al.20 recently 
introduced the concept of a distributed organization (DO). A distributed organization is a subset of species 
that achieves overall self-maintenance by separation into suitable compartments20,21. As a generalization of the 
above-mentioned relation of fixed points and organizations, it was also shown that every persistent subspace 
of a PDE system is a DO20,21. This represents a method for analyzing dynamical systems that are comparable to 
commonly used fixed point analyses22. While a mathematical theory has been introduced, an algorithm is not 
available so far. A particular problem is that the separation into suitable compartments is not trivial and has to 
be found by the algorithm.

OPEN

1Department of Basic Sciences, Ernst-Abbe University of Applied Sciences Jena, Carl‑Zeiss‑Promenade 2, 
07745  Jena, Germany. 2Department of Mathematics and Computer Science, Friedrich Schiller University Jena, 
Fürstengraben, 07743  Jena, Germany. 3Department of Mathematics & Natural Sciences and Centre for Applied 
Mathematics & Bioinformatics, Gulf University for Science and Technology, 32093  Hawally, Kuwait. 4European 
Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany. 5These authors contributed equally: Stephan 
Peter and Linus Woitke. *email: peter.dittrich@uni-jena.de; ibrahim.b@gust.edu.kw

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44244-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17169  | https://doi.org/10.1038/s41598-023-44244-x

www.nature.com/scientificreports/

This paper is structured as follows. In the “Preliminaries” Section, an example reaction network is used to 
introduce Chemical organization theory and DOs. The “Results” Section consists of three parts. First, the main 
focus is shifted from species to reactions by considering subsets of organizational reactions belonging to a DO. 
Using this and the persistence theorem (Theorem 3.25 in20) a theorem is derived that states that for all bounded 
solutions of a reaction-diffusion system the set of potentially persistent reactions of an a reaction-diffusion system 
always forms a set of organizational reactions of the underlying reaction network. Then the fundamental new 
concepts of an elementary reaction closure and maximal compartment are described mathematically and applied 
to the same example reaction network. The elementary reaction closures reflect the dependence of reactions on 
one another, whereas maximal compartments describe the minimal number of compartments required for a 
subspace to be persistent. After that, all functions building up the algorithm are described in detail and their run 
time is studied. The core of the algorithm uses mixed-integer linear programming solver, which can be exchanged. 
Finally, we apply the algorithm to several example models including all models of the BioModels database.

An implementation of the algorithm developed in this word is available in the GitHub https://​github.​com/​
Woitk​eL/​dorga​nalys​is.

Preliminaries
In this section, the definitions and main results from20 are introduced, which set the stage for the algorithm 
presented in this work. A reaction network (S ,R ) consists of a finite set S of n ∈ N species as well as a finite 
set R of m ∈ N reactions describing the interactions between the species. Note that both, S and R , are assumed 
to be finite sets throughout this work.

Introductory example
As an example, we consider the following reaction network describing the role of microRNAs in osteoarthritis23. 
It is a micro-RNA transcription-factor interaction model. The set of species is

and the set of reactions

thus n = 9 and m = 11 for this example.
Generally, the equation of reaction number j can be described by

with natural numbers aij , bij , j = 1, . . . ,m which can be zero. For the reaction rj the set of species si with aij > 0 
is called support of rj , shortly supp(rj) , and the set of species si with bij > 0 the products of rj , shortly prod(rj) . 
For a subset S � S of species, we say that it supports a reaction r ∈ R , if supp(r) � S.

A reversible reaction is a reaction in which the conversion of reactants to products and the conversion of 
products to reactants occur simultaneously. In this work, reversible reactions are represented by a pair of two 
separate reactions, which are both active or inactive at the same time. From the set of reactions the so-called 
stoichiometric matrix N ∈ Rn×m with its elements nij = bij − aij , i = 1, . . . , n, j = 1, . . . ,m is derived.

TF1 : Transcription factor 1

TF2 : Transcription factor for miR synthesis

miR : micro RNA

miR_gene : gene of micro RNA

Sink : EmptySet

Signal : signal of TF1 transcription

miR_gene_TF2 : mir_gene_TF2 complex

miR_gene_TF1 : mir_gene_TF1 complex

TF1_mRNA : TF1_mRNA complex

r1 : miR_gene + TF1 −→ miR_gene_TF1 (miR-gene TF1 binding)

r2 : miR_gene_TF1 −→ miR_gene + TF1 (miR-gene TF1 release)

r3 : miR_gene + TF2 −→ miR_gene_TF2 (miR-gene TF2 binding)

r4 : miR_gene_TF2 −→ miR_gene + TF2 (miR-gene TF2 release)

r5 : miR_gene_TF2 −→ miR_gene_TF2+miR (miR-synthesis)

r6 : miR −→ Sink (miR-degradation)

r7 : Signal −→ Signal + TF1_mRNA (TF1-transcription)

r8 : TF1_mRNA −→ Sink (TF1-mRNA-degradation)

r9 : TF1_mRNA+miR −→ miR (TF1-mRNA-deg via miR)

r10 : TF1_mRNA −→ TF1_mRNA+ TF1 (TF1-translation)

r11 : TF1 −→ Sink (TF1-degradation),

(1)
n

∑

i=1

aijsi →

n
∑

i=1

bijsi

https://github.com/WoitkeL/dorganalysis
https://github.com/WoitkeL/dorganalysis
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Chemical organization theory (COT)
Definition 1  (Closure of a subset of species) Given a reaction network (S ,R ) and a subset S ⊆ S of species. 
We define the set operation

that is, the set of species from S together with all species, that are produced by the reactions, which are active on 
S. From this, we define a monotonously increasing sequence of sets

where kmin = min{k ∈ N0 : clos
k+1
1 (S) = closk1(S)}. Since the set of species and the set of reactions is finite, kmin 

is finite, and thus also the set

which we call the closure of S.

Generally, flux vectors v ∈ Rm
+ , where

are used in dynamical systems to describe the intensity of each reaction for a given state of the system. Depending 
on the present species in that state, not all flux vectors are feasible, because it is assumed that a reaction is active 
if and only if all the species of its support are present.

Definition 2  (Feasible flux and inflow reaction) For a given subset S � S of species, a vector v ∈ Rm
+ vr is called 

feasible flux (with respect to S) if and only if for all reactions r ∈ R.

Furthermore, a reaction r ∈ R that has empty support is called inflow reaction as it is always active, that is, vr > 0 
for every feasible flux v.

Definition 3  (Closedness, self-maintenance and organizations) Given a reaction network (S ,R ) and a subset 
S ⊆ S of species then we call S.

1.	 self-maintaining if there is a feasible flux v with respect to S such that 

 that is, all elements of Nv are equal or greater than zero,
2.	 closed if 

3.	 organization if it is self-maintaining and closed.

Distributed organizations (DOs)
The previously defined organizations were generalized towards so-called distributed organizations (DOs), which 
are introduced and broadly discussed in20,21.

Definition 4  (Distributed organizations (DOs)) Given a reaction network (S ,R ) , a subset D ⊆ S is a DO 
(through a vector v̂ ∈ Rm

+ ) if and only if there are k, k ∈ N , pairwise different subsets (which we call “compart-
ments” according to nomenclature of systems biology) S1, . . . , Sk ⊆ D with

such that 

1.	 each Si , i = 1, . . . , k, is closed;

(2)clos1(S) ≡ S ∪ {si ∈ S : ∃rj ∈ R : supp(rj) ⊆ S, bij > 0},

clos01(S) =S,

clos11(S) =clos1(S),

clos21(S) =clos1(clos1(S)),

clos31(S) =clos1(clos1(clos1(S))),

. . .

closkmin+1
1 (S) =clos1(clos

kmin
1 (S)),

(3)clos(S) ≡ closkmin
1 (S),

Rm
+ ≡ {v ∈ Rm : vi ≥ 0, i = 1, . . . ,m},

(4)vr > 0 ⇔ supp(r) � S.

(5)Nv ≥ 0,

(6)clos(S) = S,

(7)D = ∪k
i=1Si
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2.	 there is a vector v̂ ∈ Rm
+, v̂ ≥ 0, such that 

3.	 and there is a feasible flux v̂i ∈ Rm
+, v̂

i ≥ 0, with respect to each subset Si , i = 1, . . . , k , with 

Collectively, we call the Eqs. (8) and (9) the self-maintenance property of a DO. We say “D is distributed to the 
compartments Si ”, “the compartments Si form a compartmentalization (or distribution) of D” or “ Si is a compart-
ment of D”. When listing the elements of the subsets Si , i = 1, . . . , k, of species, we use a vertical notation, for 
example, if D is distributed to S1 = {s1, s2} and S2 = {s1, s3} , we write

If a DO exhibits a distribution to only one subset of species, then this DO is an organization in the sense of COT. 
Otherwise, we call it a “genuine DO”.

Mathematically, the significance of DOs is proven by the fact that the set of persistent species of every solution 
of a reaction-diffusion system is always a DO20.

From a given reaction network the set of DOs can be computed without the need for any knowledge about 
the kinetics (reaction constants, kinetic laws applied, etc.). The set of DOs is always a lattice20. The lattice of DOs 
of the micro-RNA transcription-factor interaction model23 is shown in Fig. 1.

The left-hand side of Fig. 2 shows the main definitions of this subsection together with their relations to one 
another.

Note, that these definitions are based upon subsets of species. In the next section, these definitions are comple-
mented by the definitions and theorems (displayed on the right-hand side of Fig. 2) necessary for the algorithm 
to compute DOs. The ladder are based upon subsets of reactions.

Results
Novel theoretical concepts
In this section, the new definitions which are necessary to formulate the algorithm are stated.

Set of organizational reactions (SORs)
In principle, this is a transfer of the species-based definitions from above to a reaction-based approach. The first 
idea is to transfer Definition 1 of a closure of a subset of species to reactions.

Definition 5  (Elementary Reaction Closure (ERC)) Given a reaction network (S ,R ) and a reaction r̂ ∈ R , 
we call the set

(8)Nv̂ ≥ 0;

(9)v̂ =

k
∑

i=1

v̂i .

(10)D = S1 ∪ S2 = {s1s2|s1s3}.

Figure 1.   Lattice of DOs of micro-RNA transcription-factor interaction model from23. The 17 vertices of the 
lattice represent the DOs of the model. Each vertex displays the species of the respective DO. The boxes mark 
DOs that are organizations whereas the 6 ellipses mark genuine DOs. Species that do not appear in any DO that 
is a subset of that DO are marked green. The smallest DO of the lattice (which always has to be an organization) 
is at the bottom of the lattice and is empty since there is no inflow reaction in this example. Note, that in this 
figure there is no information contained about which reactions are active in the DOs. Note also, that each of 
the species TF2,miR_gene and Sink alone does not trigger any reaction. Therefore, these species create multiple 
DOs that are non-reactive (like the empty set). At the top of the lattice is the biggest DO. For this example, it 
contains all species of the model.
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of reactions the elementary reaction closure (ERC) of r̂ , that is, the set of reactions that are activated as soon as 
r̂ is active.

By design, the ERC of a reaction is unique. In the implementations of the algorithm, the computation of 
the ERC of a reaction is realized by the function create_ERCs(). For the micro-RNA transcription-factor 
interaction model, Table 1 shows the ERC of each reaction.

In the following, the recursive construction of the ERC of r3 is described as an example. The species miR_gene 
and TF2 are required to run reaction r3 , which produces species miR_gene_TF2 . This in turn triggers the reac-
tions r4 and r5 . This results in the addition of the species miR_gene and miR. miR triggers the reaction r6 , thus the 
reaction r6 is added at last. Since no further reactions are supported by the listed species set {miR_gene,TF2, } 
the ERC of r3 is r3, r4, r5, r6.

Definition 6 transfers DOs, which were defined for species sets, to sets of active reactions.

(11)ERC(r̂) ≡ {r ∈ R : supp(r) � clos(supp(r̂))}

Species Reactions

Closedness ERC

Organization

Fixed-point theorem
Hasse diagram of orgs

DO
Persistence theorem

Lattice of DOs

SOR
Lattice of SORs

MC

Maximality

Closure

Self-maintenance

Distributability

Definition 6

Definition 5

Lemma 3

Figure 2.   Overview of the main definitions of this work and their mutual interrelations. The boxes highlighted 
in gray are linked to the respective parts of the text where they are described. On the left-hand side, the items 
based on species are listed as presented in the Preliminaries of this work. On the right-hand side, the new 
reaction-based terms are listed as introduced in the Results of this work. The term MC stands for the maximal 
compartment and is defined in Definition 7.

Table 1.   ERC of each reaction of the micro-RNA transcription-factor interaction model23. Here the elements 
of each ERC are listed in the order of their computation even though mathematically an ERC is a set.

Reaction ERC

r1 r1, r2, r11

r2 r2, r1, r11

r3 r3, r4, r5, r6

r4 r4, r3, r5, r6

r5 r5, r4, r6, r2

r6 r6

r7 r7, r8, r10, r11

r8 r8, r10, r11

r9 r9,r6,r8, r10, r11
r10 r10, r8, r11

r11 r11
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Definition 6  Given a reaction network (S ,R ) , a DO D ⊆ S , and a feasible flux v̂ ∈ Rm
+ with respect to D, 

such that D is a DO through v̂ , then:

•	 The set 

 is called set of organizational reactions (through v̂ ) or shortly SOR.
•	 A subset S ∈ {S1, . . . , Sk} of species is called compartment of the DO-SOR pair (D, SOR(v̂)) if there are distinct 

sets S1, . . . , Sk of D with 

•	 A set {S1, . . . , Sl} of compartments of the DO-SOR pair (D, SOR(v̂)) is called compartmentalization of the 
DO-SOR pair (D, SOR(v̂)) if 

 and 

•	 A species si ∈ S is overproduced with respect to the flux vector v̂ if 

Definition 6 implies that for a given DO there is a unique maximal SOR that can be computed by the algo-
rithm presented in this work.

Lemma 1  (Unique Set of Overproduction) To each SOR(v̂) belongs a unique biggest set of species that can be 
overproduced by the set of reactions contained in SOR(v̂).

Proof  There can be a number of flux vectors v̂1, . . . , v̂k ∈ Rm , each tracing to SOR(v̂) = {rj ∈ R : v̂j > 0} , but 
with different sets of overproduced species. Unifying all these sets of overproduced species results in a unique 
biggest set of overproduced species. 	�  �

Roughly speaking, for a given DO, there can be multiple corresponding SORs, and conversely, for a given 
SOR, there can be multiple corresponding DOs. More precisely: 

1.	 Given a reaction network (S ,R ) and a DO D � S , there can be several vectors v̂1, . . . , v̂k ∈ Rm
+ , through 

which a subset D is a DO. Nevertheless, the sets SOR(v̂1), . . . , SOR(v̂k) of reactions can be different from 
each other. These differences describe the different potential behaviors of the DO D in terms of the active 
reactions. An example of a DO performing several SORs is indicated by a red link between SORs in the hasse 
diagram.

2.	 Given a reaction network (S ,R ) , a set D � S of species and a vector v̂ ∈ Rm
+ such that D is a DO through v̂ . 

Then there can be different DOs all exhibiting the same behavior, that is, the same set SOR(v̂) of active reac-
tions. These DOs include one, say Dmin , which is minimal in terms of its number of species and its number 
of compartments. The other DOs are unions of Dmin and further non-reacting species.

Lemma 2  (SORs form a lattice) The set of all SORs of a given reaction network (S ,R ) forms a lattice.

Proof  A lattice is a partially ordered set in which every two elements have a unique supremum (a least upper 
bound) and a unique infimum (a greatest lower bound). 

1.	 Partial order of the set of SORs: The subset relation for sets provides a partial order.
2.	 Unique supremum: Given two SORs R1,R2 ⊆ R , derived from two species subsets D1,D2 � S which are 

DOs through the vectors v̂, ˆ̂v ∈ Rm
+ , we consider 

Rsup is a SOR since D ≡ D1 ∪ D2 is a DO through the vector v̂ + ˆ̂v . Thereby a compartmentalization of D is 
assumed, where the compartments of D1 and D2 are simply put next to each other disjointly without chang-
ing or merging them in any way. With that, the minimality of Rsup follows trivially since no new reaction is 
activated and thus no further species can be attained.

3.	 Unique infimum: Given two SORs R1,R2 ⊆ R , we take the union of all SORs contained in R1 ∩ R2 as infimum 
that is, 

(12)SOR(v̂) ≡ {rj ∈ R : v̂j > 0}

(13)∪k
i=1{r ∈ R : supp(r) � Si} = SOR(v̂).

(14)∪l
i=1Si = D.

(15)∪l
i=1{r ∈ R : supp(r) � Si} = SOR(v̂).

(16)(Nv̂)i > 0.

(17)Rsup ≡ R1 ∪ R2.
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 The union is finite and it is performed disjointly like the union of R1 and R2 to get a unique supremum. The 
existence of Rinf  follows from the fact that there exists a unique minimal SOR Rmin of the reaction network. 
This is the set of inflow reactions together with the reactions in the ERCs of the inflow reactions. The reac-
tions of Rmin are included in any SOR. Note that Rmin can be empty. The uniqueness of Rinf  can be proven 
easily by contradiction: If there were two different greatest infima, unifying them would give a greater one 
in contradiction to the assumption.

	�  �
The lattice of SORs of the micro-RNA transcription-factor interaction model23 is shown in Fig. 3.
For models of Influenza-A and SARS-CoV-2 virus infection dynamics, in24 resp.25 it was shown how such 

lattices can be used to better understand model dynamics and and also to compare different models. Lemma 3 
provides an equivalent definition of SORs that use ERCs to guarantee closedness and does not explicitly refer to 
DOs. It is applied in the implementation of the algorithm to compute SORs.

Lemma 3  (Equivalent Definition of SORs) Given a reaction network (S ,R ) , a subset R � R of reactions is a 
SOR if and only if there is a vector v̂ ∈ Rm

+ with the following two properties: 

1.	 Self-maintenance: Nv̂ ≥ 0 and
2.	 Closedness: R = ∪{ERC(rj) : v̂j > 0}.

Proof  Following Definition 6 it suffices to show that there as an appropriate corresponding DO D = ∪k
i=1Si 

with closed subsets S1, . . . , Sk � S of species and feasible fluxes v̂1, . . . , v̂k with respect to each Si such that 
v̂ =

∑k
i=1 v̂

i.
Let k ≡ |R| , that is, R = {r1, . . . , rk} . For each i = 1, . . . , k , subsets

of species are defined which are closed by definition. Thus, there is an equivalence between the set of species 
subsets Si and the set of elementary reaction closures ERC(rj).

For each j = 1, . . . , k , the number

is defined which is the number of species subsets Si supporting the reaction rj . Furthermore, for each subset 
Si , i = 1, . . . , k, and each reaction rj ∈ R, j = 1, . . . ,m, the number.

is defined which equals one if rj is supported by Si , and which equals 0 if rj is not supported by Si . Now, for each 
subset Si , i = 1, . . . , k, and each reaction rj ∈ R , j = 1, . . . ,m, the feasible fluxes are defined by

(18)Rinf ≡ ∪{R ⊆ R1 ∩ R2 : R is a SOR}.

(19)Si ≡ clos(supp(ri))

(20)l(j) ≡ {i ∈ {1, . . . , k} : supp(rj) � Si},

(21)l(i, j) =

{

0, if supp(rj) � Si
1, if supp(rj) � Si ,

Figure 3.   Lattice of the 8 SORs of the micro-RNA transcription-factor interaction model23. The boxes mark 
SORs that can occur in an organization whereas the ellipses mark SORs that can occur in genuine DOs. A red 
line links two SORs representing the same species set. A reaction of a SOR is marked green if it is not contained 
in any SOR which is a subset of that SOR. Below the reactions of each SOR, the minimal corresponding DO 
Dmin is given. A more detailed description of all information on the lattice is given in Section “Interpreting a 
lattice of SORs”.
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	�  �

Maximal compartments (MCs) and minimal compartmentalizations
For real-life systems, evolutionary aspects such as efficiency are important. Efficiency can be realized by mini-
mizing the number of compartments such systems exhibit. Definition 7 provides a description of the maximal 
compartments which can be realized for a given DO-SOR pair.

Definition 7  (Maximal Compartment (MC) and Minimal Compartmentalization of a DO-SOR pair) Given a 
reaction network (S ,R ) , a DO D � S and one of its associated SORs R � R , then:

•	 A compartment S � S of the DO-SOR pair (D, R) is called maximal if there is no other compartment Ŝ of 
the DO-SOR pair (D, R) such that S ⊂ Ŝ.

•	 A compartmentalization {S1, . . . , Sl} of the DO-SOR pair (D, R) is called minimal if its number l of compart-
ments is minimal, that is, there is no compartmentalization of the DO-SOR pair (D, R) with a number of 
compartments lower than l.

The algorithm presented in this work can compute all MCs of a DO-SOR pair. The algorithm exploits the 
fact, that an MC is closed and does not support a reaction outside of the SOR. From the set of MCs of a DO-SOR 
pair, the algorithm can also compute minimal compartmentalization by selecting a subset of the set of MCs of 
the DO-SOR pair.

In the micro-RNA transcription-factor interaction model23 the application of MCs on the SOR 
{TF1_degradation,TF1_mRNA_degradation,TF1_transcription, TF1_translation,miR_degradation,miR_gene
_TF2_binding , miR_gene_TF2_release,miR_synthesis} can be observed. as the vertex {R10,R2,R3,R4,R5,R6,
R7,R8,R9} in the lattice of SORs, see Fig. 3. The algorithm produces 3 MCs:

•	 MC1: {Signal, Sink,TF2, TF1_mRNA,TF1}
•	 MC2: {Sink, miR_gene, TF2, miR_gene_TF2, miR}
•	 MC3: {Sink, TF2, miR, TF1}

The MCs 1 and 2 are able to perform the SOR resulting in a minimal number of compartments of 2. These com-
partments are not unique. One can remove the species TF2 from MC2 without impacting the active reactions. 
The reactions supported in an MC can also be impacted by removing a species of its support, but only if the 
support of these reactions is also in another active compartment.

The right-hand side of Fig. 2 shows the new definitions of this subsection and relates them to those from the 
Preliminaries, which can be found on the left-hand side.

Persistence theorem for SORs and further implications for the dynamics
Theorem 4 is a persistence theorem, which traces the persistence theorem for species (Theorem 3.25 in20) and 
finally transfers it to reactions.

Theorem 4  (The set of persistent reactions is a SOR) Given a RDS

and

•	 A connected domain � with a C2 smooth boundary ∂� and 0 <
∫

�
dx < ∞,

•	 An underlying reaction network containing n = |S | species and m = |R | reactions,
•	 Diffusion rates di ≥ 0, i = 1, . . . , n, and
•	 A so-called flux vector function v : Rn

+ → Rm
+, c �→ v(c), that is 

1.	 Lipschitz continuous on every bounded subset of Rn
+ and

(22)v̂ij =







l(i, j)

l(j)
v̂j , if rj ∈ R

0, otherwise.

(23)
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2.	 Feasible, that is, for every c ∈ Rn
+ the vector v(c) is a feasible flux with respect to the set {s ∈ S : cs > 0} of 

species present in c.

Furthermore given a bounded solution

of the RDS 23 with:

•	 Derivatives 
∂ ĉ

∂t
 and 

∂2ĉ

∂x2
 are each continuous with respect to x and t,

•	 |ĉ(x, t)| < K for all x ∈ �, t ≥ 0 for a number K ∈ R , that is, ĉ is bounded,

then the set of persistent species of the solution ĉ is a DO and the occurring compartmentalization is described by 
a flux vector v̂ ∈ Rm

+ which is derived by double-integration with respect to x and t as defined in Lemma 3.23 of20.
From the definition of SORs (Definition 6) follows, that the set

taken as the set of persistent reactions of the solution ĉ , is a SOR.

Therefore, by definition, a reaction is persistent if and only if the set of species in its support is persistent.
As shown in21, Theorem 4 does not only hold true for RDS but can also be transferred to the special cases of 

ODE and patch-like systems. Note that the concept of persistence used here is a new one that was defined in20. 
Note also that it is possible to extend Theorem 4 to other boundary conditions, for example, by adding appropri-
ate reactions to the reaction network as it was indicated in26.

Theorem 4 also implies that a subset of reactions of the reaction network, which is not a SOR, can not per-
sist. In other words, such a SOR must define a transient state of any solution of any RDS with that underlying 
reaction network.

From20 another implication for the dynamics, not in the long term but right after leaving the initial states, can 
be derived. Lemma 3.21 in20 states that for each compartment, the closure of the initially present species appears 
and does not vanish within a finite time. Transferred to reactions this means that right after leaving the initial 
state, in each compartment, the whole ERC of the initially active reactions is activated. Thus the set of reactions 
that persist is always a subset of the ERC of the initially active reactions.

The algorithm
The algorithm for computing all sets of organizational reactions (SORs) and all distributed organization (DOs), 
representing the persistent subspaces, consists of two major steps: First, all elementary reaction closures (ERCs) 
are computed, and then SORs and DOs are computed by mixed integer linear programming (MILP). For MILP, 
the dimension of the search spaces is an upper bound for the complexity.

In Fig. 4 the specific functions are shown interacting as a workflow including the most important data objects.
These functions are used jointly by the Analysis class. The functions create_MCs() and get_min_com-

partments() are used together in the function Analysis.get_compartmentalization_of_SOR_
DO_pair(). Besides returning the output of the functions, the results are saved as attributes of the class as 
well. Further information about the usage of the classes and functions is available in the GitHub https://​github.​
com/​Woitk​eL/​dorga​nalys​is.

Computing all elementary reaction closures (ERCs)

•	 Function: create_ERCs
•	 Input (required): a list of reactions
•	 Output: a dictionary mapping a reaction to its ERC

The algorithm originates straight-forward from the definition of closure of the reactions. For each given reaction, 
a species set for its ERC is created by unifying its support and its products. Any supported reactions and their 
products are added successively in a recursive function.

The result is saved as an instance of an ERC class object. The ERC class contains the attributes reactions and 
species. All the ERCs are then saved in an ERC-dictionary which is the means of the information transfer. Since 
in this work by assumption the total number n of species as well as the total number m of reactions are finite this 
also holds true for the highest order of all reactions

which is lower or equal to the number of species n. Therefore, the function create_ERCs terminates and its 
time complexity is given in

(24)ĉ : �× R+ → Rn, (x, t) �→ c(x, t).

(25){r ∈ R : v̂r > 0},

(26)k ≡ max{max{|supp(r)|, |prod(r)|} : r ∈ R },

https://github.com/WoitkeL/dorganalysis
https://github.com/WoitkeL/dorganalysis


10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17169  | https://doi.org/10.1038/s41598-023-44244-x

www.nature.com/scientificreports/

Additionally, create_ERCs computes a transitive reduction27 to obtain a compact non-redundant represen-
tation of the ERCs. This reduces the number of constraints for the calculation of SORs and DOs. It is shown in 
that implementing the data as a matrix leads to a time complexity of the reduction of

Computing all sets of organizational reactions (SORs)

•	 Function: all_SORs()
•	 Input: list of reactions
•	 Output: list of SORs

First, all ERCs are computed as described in the previous section. Then the largest SOR is computed by mixed-
integer linear programming (MILP). All remaining SORs are obtained successively by integer cuts, excluding 
the SORs found so far.

For the MILP there are m continuous variables representing the flux vector v ∈ Rm
+ and m discrete variables 

b ∈ {0, 1}m denoting whether reaction rj is an element of the SOR ( bj = 1 ) or not ( bj = 0 ). Thus, the search space 
is Rm

+ × {0, 1}m . To find the largest SOR the following objective function is used

subject to the following constraints:

with the stoichiometric matrix N ∈ Rn×m and the constant c = 10000 . Note that the variables are coupled such 
that bj = 1 (reaction rj is part of the SOR) is equivalent to a strictly positive flux vj > 0 of reaction rj . An inflow 
reaction is a reaction with empty support and thus must be present in any SOR.

Solving the MILP has exponential time complexity since it is NP-hard28. The complexity for a single solution 
is exponential with the number of boolean variables, that is, the time complexity is given in

(27)O (m3 · k).

(28)O (m3).

(29)max

m
∑

j=1

bj

Nv ≥ 0 (self-maintenance)

bj ≥ bk ∀rk ∈ R , ∀rj ∈ ERC(rk), rk �= rj (reaction closure)

bj = 1 for all inflow reactions rj ∈ R (inflow)

bj · c ≥ vj ≥ bj ∀rj ∈ R (coupling variablesbj)

(30)O (2m).

Figure 4.   Main functions and classes of the algorithm and their relations to each other. To get directed to the 
descriptions of the functions click on their respective boxes.
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When solving for several solutions there is a huge save in complexity when using Gurobi because of the use of 
a solution pool.

From the examples stated in Section “Interpreting a lattice of SORs” it will be clear, that the functions all_
SORs() and all_DOs() exhibit the largest differences between the worst case runtime analyzed here and 
the actual runtimes. The latter is strongly impacted not only by the number of boolean variables but also by the 
number of constraints of the actual reaction network.

Computing all distributed organizations (DOs)

•	 Function: all_DOs()
•	 Input: list of reactions
•	 Output: list of DOs

Like for SOR computation, all ERCs are computed. Then the largest DO is computed by mixed-integer linear 
programming (MILP). All remaining DOs are obtained successively by integer cuts.

For the MILP there are m continuous variables representing the flux vector v ∈ Rm
+ and m discrete variables 

b ∈ {0, 1}m denoting whether reaction rj is active in the DO ( bj = 1 ) and n discrete variables ej denoting whether 
species si is an element of the DO ( ei = 1 ). Thus, the search space is Rm

+ × {0, 1}m × {0, 1}n . To find the largest 
DO the following objective function is used

subject to the following constraints:

Note that the variables are coupled such that if a reaction is present ( bj = 1 ) also all species involved as reactants 
or products must be present ( ei = 1 ). Further, note that the constraints ”species closure” ensure that a reaction 
must be present ( bj = 1 ) if it is supported in the single species closure of a species that is present ( ei = 1).

Finally note that in the current implementation, Gurobi’s solution pool is used, which generates all DO-SOR 
pairs. Recall that one DO can have many SORs. From these solutions, only the DOs are returned. Internally, 
however, the tool stores all SORs in a DO-SOR dictionary for later use.

The worst case time complexity of all_DOs() is given in

since compared to all_SORs() there is a further boolean variable for each of the n species.

Computing all maximal compartments (MCs)

•	 Function: create_MCs()
•	 Input: Reaction network, SOR, DO
•	 Output: list of MCs (species sets)

The function create_MCs() computes the (unique) maximal compartments of a given SOR. It works on a 
list of candidates for the MCs, which is initialized by the set of species of the DO and then broken down through 
the following four steps.

First, for each compartment it is checked if it supports an inactive reaction, that is, a reaction not contained 
in the SOR. If this is the case, the compartment is split into k compartments, where k is the order of the reac-
tion. Each compartment is missing exactly one species of the support for the reaction. The statements regarding 
the time complexity are with the condition of disjoint supports of all reactions resulting in k ·m ≤ n The time 
complexity of this first step is given in O (n · km+1).

After that, compartment candidates, which are subsets of other valid candidates, are eliminated: 
O (2n · 2n) = O (4n).

Next, the candidates are checked for closedness. Each reaction, which extends the present species set can 
not occur in this set and is therefore inactivated by updating the MCs in the same way as done for the inactive 
reactions, that is, by splitting it. This check of closure is repeated until none of the compartments is altered. The 
total time complexity of the check for closure is given in O (m2 · 2n · k · n).

(31)max

n
∑

i=1

ei

Nv ≥ 0 (self-maintenance)

bj ≥ bk ∀rk ∈ R , ∀rj ∈ ERC(rk), rk �= rj (reaction closure)

bj = 1 for all inflow reactionsrj ∈ R (inflow)

bj · c ≥ vj ≥ bj ∀rj ∈ R (coupling variablesbj)

bj ≥ ei ∀ei ∈ S , ∀rj ∈ R , supp(rj) ⊆ clos({si}) (species closure)

ei ≥ bj ∀ei ∈ S ,∀rj ∈ R , ei ∈ supp(rj) ∪ prod(rj) (coupling variablesei)

(32)O (2m+n),
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Finally, proper subsets of candidates are deleted, if present: O (4n). Thus the total time complexity of cre-
ate_MCs() is given in

Computing a minimal compartmentalization of a SOR

•	 Function: get_min_compartments()
•	 Input: Reaction network, SOR, MC_list
•	 Output: list of MCs

The maximal compartments (MCs) listed in MC_list are used in an ILP to find the minimal number of compart-
ments needed for the affiliated SOR. For each MC ∈ MC_list there is a discrete variable bMC ∈ {0, 1} denoting 
whether the MC is part of the minimal compartmentalization ( bMC = 1 ) or not ( bMC = 0 ). The ILP, which is a 
set cover problem29, uses the objective function:

subject to the following constraints:

The first constraint ensures that all species are covered by the MCs and the second constraint guarantees that 
each reaction of the given SOR is active in at least one MC. With this, a minimal set of MCs, a minimal compart-
mentalization, is found such that all species in species(SOR) are covered and each reaction of the SOR can run 
in at least one MC. Since the problem resembles the set cover problem, which is proven NP-complete, it is not 
possible, to solve this problem in polynomial time and the LP seems to be the most efficient way to solve this.

Solving the ILP is of exponential time complexity, that is, given in

Analysis of the models of the bio models database
This section provides analyses of the models of the BioModels Database30 performed by using the algorithms 
presented in the previous chapter. At the end of this section, the lattice of SORs of an artificial reaction network, 
which is not contained in the BioModels database, is interpreted to exemplify which information can be drawn 
from it.

SORs, organizations and genuine DOs
932 models of the BioModels Database were transformed into a proper reaction network using the SBML reader 
of the libsbml package. These are analyzed in this section. To keep the study tractable, only the reactants and 
products of a reaction are considered, more precisely, the information contained in other elements of an SBML-
model is ignored, for example, modifiers, rules, events, kinetic laws, or whether a species is flagged as constant.

The github contains the file biomodels.csv with all extracted information of each model. In total, the algorithm 
computed 1’019’600 SORs for the 932 models, of which 218’870 can be represented by an organization, that is 
about 21.5% . All other SORs represent what are called genuine DOs, which are SORs that cannot be represented 
by organizations. In Fig. 5, all models are shown according to the number of their SORs and the fraction of SORs 
representing organizations.

Even though the majority of models do not exhibit any genuine DO, about four-fifths of all SORs are genu-
ine DOs. More precisely, the fractions of models containing at least one genuine DO appear to increase with 
increasing number of SORs: 0% (for models with only one SOR), 14% (for models with two SORs), 17 , 36 , 36 , 34 , 
57 , 59 , 57 , 79% (for models with 1001 to 50,000 SORs). The reason for this is that with an increasing number of 
SORs also the number of possibilities for creating new genuine DOs (by combining SORs separately with each 
other) increases.

Separability of supports and order of reaction
Now the prerequisites for genuine DOs are studied on the level of reactions. This will make clear why most of 
the models cannot exhibit any genuine DO. Separability of the support of a reaction is a necessary condition for 
genuine DOs since it is a prerequisite for disabling a reaction. In turn, separability of the support of a reaction 
is possible only if the order of a reaction is greater than one, that is, the number of species of its support is at 
least two. The higher the order of a reaction the more ways there are to construct a genuine DO by distributing 

(33)O (4n).

(34)min
∑

MC∈MC_list

bMC

(35)
∑

MC∈MC_list: species∈MC

bMC ≥ 1 for all species in species(SOR)

(36)
∑

MC∈MC_list: supp(reaction)�MC

bMC ≥ 1 for all reactions of the SOR

(37)2number of MCs.
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species and this in turn increases the probability of the appearance of a genuine DOs. Figures 6 and 7 provide 
an overview of the orders of reactions of the analyzed models of the BioModels Database.

Log-scaled distribution of all reactions of the analyzed models of
Only 14% of all reactions have an order bigger than 1 and thus can be deactivated by separating their supports. 

Most of the models do not contain reactions of higher order. Thus most of the models cannot exhibit a genuine 
DO. This, together with the above-mentioned observation of genuine DOs often resulting from combining 
others, explains why only 237 of the 932 analyzed models contain at least one SOR that is a genuine DO. In the 
following the structure of the computed SORs is studied, i.e., their compartmentalizations or, more precisely, 
their numbers of compartments.

Minimal compartmentalizations
For SORs requiring at least two compartments, that is, for genuine DOs, Fig. 8 provides an overview of the 
distribution of the minimum numbers of required compartments across the models (subfigure (a)) resp. the 
SORs (subfigure (b)).

Even though most models get along with one compartment for all their SORs there is a non-negligible number 
of models each containing at least one genuine DO (Fig. 8a). More precisely, SORs were found with their mini-
mum number of required compartments occupying all numbers in the range from one to five (Fig. 8b). Here, 
the number of SORs decreases monotonously with an increasing minimum number of required compartments. 

Figure 5.   Log-scaled numbers of models according to their number of SORs and DOs resp. organizations. 
Models that have at least one SOR that is a genuine DO (i.e., that can not be represented by an organization) are 
marked dark blue and the others are marked light blue. The fraction equals zero for models with only one SOR 
confirming the theorem stating that every model has at least one organization20.

Figure 6.   Log-scaled distribution of all reactions of the analyzed models of the BioModels Database with 
respect to their order. Reactions of order 1 dominate the set of models. Only 22.18% of the reactions have an 
order bigger than one and therefore allow for separating the species into several compartments and attaining a 
genuine DO.
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Probably the reason for this is that the more compartments are needed, the more reactions have to be disabled 
simultaneously which in turn is even harder the more reactions have to be disabled.

Runtime and timeout analyses
While analysing the BioModels Database, all 3 parts of the algorithm resulted in large running times for some 
models respectively. The calculation of ERC only came close to the timeout cap in two exceptionally large models 
with more than 1500 reactions (BIOMD0000000255,BIOMD0000000595). The calculation of SORs and DOs 
was a problem for 2 models with more than 500 reactions and reactions of a high order (BIOMD0000000255 
and BIOMD0000000496). Figure 10 provides an overview of how the runtime of SOR computation for each 
model relates to the number of species, the number of reactions, the number of SORs, and the overall number 
of constraints of the LP used to compute the SORs. The upper limit of the number of SORs is given as parameter 
of the LP. The default is 50.000. Heuristic algorithms using a combinatorial build up, could be used to grasp all 
these basic SORs. A similiar approach is used for an alternative computation of the DOs from the set of SORs. 
This function is available in the iterate_over_DB file. Most of the models not fully processed arose from the com-
putation of all minimal numbers of compartments. Figure 9 reveals the distribution of the maximum number of 
MCs across the models and its correlation to computational timeouts.

As the maximum number of MCs increases, the number of models becomes smaller and the probability of a 
computation timeout increases, making the maximum number of MCs a good indicator of runtime. Heuristic 
approaches or greedy algorithms governing the set cover problem could be implemented in that case (Fig. 10).

Figure 7.   Distribution of the highest order of reactions for all analyzed models of the BioModels Database. 
There are only a few models containing only zero-order reactions. Models of reaction order at most 1 are found 
to dominate. 51.20% of the models do not have any reaction of orders bigger than one and therefore are not 
capable of exhibiting a genuine DO.

Figure 8.   For all SORs requiring at least two compartments, that is genuine DOs: Distribution of the minimum 
number of required compartments across models (a) and across SORs (b). The 27 models causing timeout 
contain about half of all SORs. In fact, each model that causes a timeout contains well over 30,000 SORs.
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Interpreting a lattice of SORs
To conclude this chapter, an artificial 3-generator model is introduced to exemplify the output of the algorithm 
presented in this paper and to demonstrate how to interpret it. When limited to organizations, such outputs 
can be organized in Hasse diagrams, which were used previously to compare and hierarchize Influenza-A and 
SARS-CoV-2 infection dynamics models24,25. By generalizing organizations to DOs and SORs in this study, it 
was shown that the output of the algorithm is based on lattices of DOs resp. SORs.

The 3 generators, A1, A2 and A3, produce their corresponding products B1, B2 and B3 through the reactions 
R1, R2 and R3, respectively. The generator A2 is harmed by exposure to the products of the other generators, 
that is, B3 (reaction R4) and B1 (reaction R5). Thereby, also B1 is destroyed (R5). The harming of the production 
of B2 is counteracted by the reaction R6, which transforms B1 and B3 to two B2. Then there is an asymmetric 
reaction R7 erasing A1 and A2 when they meet. R7 is compensated by the last two reactions, namely R8 together 
with R9, which (through the production of the intermediate species D1) destroy the generators A1 and A3 and 
multiply B1 and thus also compensate for the destruction of B1 through R5. All nine reactions of the artificial 
model are listed below.

The lattice of all SORs of this artificial 3-generator model computed with compute_all_SORs() together 
with further information about the minimal compartmentalizations is shown in Fig. 11.

Only the largest SOR as well as the four smallest SORs of the artificial 3-generator model represent organiza-
tions whereas the intermediate SORs represent genuine DOs, which display different levels of compartmentali-
zation of one and the same set of species. All three generators can exist independently of each other and build 
up the first level of reactive compartments (2nd line of the lattice when viewed from the bottom). They can be 
combined to build the first level of SORs that can only be obtained as genuine DOs as can be seen from the 
round shape of the nodes.

The outflow reaction R7 can then be activated by putting the generators A1 and A2 in one and the same 
compartment. Optional reactions like these can inflate the number of SORs, but here this is not the case since 
the support of R7 is a subset of the supports of the reactions that are required for larger SORs, which in turn 
keeps the lattice slim and easier to interpret.

The three SORs directly below the largest SOR require at least three compartments. This is quite a rare occur-
rence when compared with the results of the BioModels database (see Fig. 8a). This is because there has to be 

R1 : A1 −→ A1+ B1 (generating function 1)

R2 : A2 −→ A2+ B2 (generating function 2)

R3 : A3 −→ A3+ B3 (generating function 3)

R4 : A2+ B3 −→ B3 (destruction of A2)

R5 : B1+ A2 −→ ∅ (destruction of A2 and B1)

R6 : B1+ B3 −→ 2B2 (product interaction benefiting B2)

R7 : A1+ A2 −→ ∅ (generator interaction weakening A1 and A2)

R8 : A1+ A2+ A3 −→ D1 (production of D1)

R9 : D1+ B1 −→ 2B1+ A2 (production of B1, A2 compensates R5, R7)

Figure 9.   Each model of the BioModels Database, that contains at least one genuine DO, belongs to a set 
of SORs. Each of these SORs has minimal compartmentalization, which is a minimal set cover of the SOR 
consisting of a selection of maximal compartments (MCs) of this SOR. This diagram plots for each model the 
maximum number of MCs whose size is a very likely bottleneck of the algorithm causing a computational 
timeout (red lines).
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a specific pattern of reactions so that neither compartment can be merged with another one. To make these 3 
possible merges impossible, a minimum number of higher-order reactions is required.

Note, that the artificial 3-generator model is the default network of the algorithm if no SBML file is handed 
over to it.

Conclusion
In this work, an algorithm was presented for the first time that allows computing all persistent subspaces of a 
reaction-diffusion system (RDS) from the underlying reaction network alone, i.e., without knowledge of kinetic 
details. For this purpose, the theory developed in20 has been extended from the species (or variable) level of the 
RDS to the reaction level by appropriate mathematical definitions. The main connections between these new 
definitions were presented and proved, culminating in the persistence Theorem 4 for SORs, which characterizes 
all persistent subspaces of an RDS at the level of reactions and allows for describing their inner structure in a 
mathematically precise way.

Then, the algorithm was presented which allows computing all SORs and DOs of an RDS by linear program-
ming, as well as describing their possible internal structure in terms of compartmentalizations. An upper bound 
for the runtime was given for each part of the algorithm. An implementation of the algorithm in Python including 
documentation for the application is freely available in the Github https://​github.​com/​Woitk​eL/​dorga​nalys​is.

Finally, the algorithm was applied to all models of the BioModels Database to analyze them with respect to 
the occurrence of genuine DOs and their structure and to practically test the performance of the algorithm. This 
confirmed both the importance of DOs in general and that of genuine DOs for the analysis of RDS, as well as 
demonstrating the practicality of the algorithm and its implementation.

Thus, a framework is now available that allows RDS to be studied both mathematically-theoretically through 
a kind of generalized fixed point analysis and practically by computing all DOs or SORs to analyze, evaluate, con-
struct, and compare RDS models from different disciplines such as chemistry, biochemistry, ecology, or sociology.

Future research tasks following this work include e.g. a further extension and generalization of the mathemati-
cal theory developed here e.g. for unconstrained systems, the application of the algorithm developed here to 

Figure 10.   Runtime for each model depends on the following parameters: number of species, number of 
reactions, number of SORs and number of constraints applied in the LP to compute the SORs. Of these 
parameters, the number of SORs in a model appears to be the strongest indicator of runtime.

https://github.com/WoitkeL/dorganalysis
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concrete models from different disciplines including a more detailed analysis and interpretation of the models 
of the BioModels Database especially with respect to the function of genuine DOs and their biological mean-
ing, and a more detailed analysis of the runtime and complexity of the presented algorithm including possible 
improvements.

Data availibility
An implementation of the algorithm developed in this work is available in the GitHub https://​github.​com/​Woitk​
eL/​dorga​nalys​is.
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