Table 4 Equilibrium point stability analysis.
Equilibrium point | Constraint conditions | |
---|---|---|
\(DetJ > 0\) | \(Tr < 0\) | |
O(0, 0) | \(\frac{1}{9}(2\theta R - 3{P_{1}})(2\theta F - 3({P_{2}} - rW + {T_{2}} + W)) > 0\) | \(\frac{2}{3}\theta (F + R) - {P_{1}} - {P_{2}} + (r - 1)W - {T_{2}} < 0\) |
A(0, 1) | \(\frac{1}{9}(3{P_{1}} - 2\theta R)(2\theta F + 3{I_{2}} + 3((r - 1)W - {T_{2}} + {T_{\textrm{3}}})) > 0\) | \({I_2} + {P_1} + \frac{2}{3}\theta \left( {F - R} \right) - {T_2} + {T_3} + \left( { - 1 + r} \right) W < 0\) |
B(1, 0) | \(- \frac{1}{9}(3{I_{1}} + 2\theta R)(2\theta F - 3({P_{2}} - rW + {T_{2}} + W)) > 0\) | \(\frac{2}{3}\theta (R - F) + {I_{1}} + {P_{2}} - rW + {T_{2}} + W < 0\) |
C(1, 1) | \(\frac{1}{9}\left( {3{I_1} + 2\theta R} \right) \left( {3{I_2} + 2\theta F + 3\left( { - {T_2} + {T_3} + \left( { - 1 + r} \right) W} \right) } \right) > 0\) | \(- {I_1} - {I_2} - \frac{2}{3}\theta \left( {F + R} \right) + {T_2} - {T_3} + W - rW < 0\) |