Table 2 Performance evaluation of eight machine learning algorithms.
Ā | CE | AUC | ACC | PRAUC | Precision |
---|---|---|---|---|---|
KNN | 0.217 | 0.776 | 0.783 | 0.585 | 0.643 |
LDA | 0.193 | 0.826 | 0.807 | 0.678 | 0.706 |
LR | 0.185 | 0.828 | 0.815 | 0.682 | 0.736 |
NaĆÆve Bayes | 0.204 | 0.815 | 0.796 | 0.617 | 0.653 |
SVM | 0.199 | 0.799 | 0.801 | 0.646 | 0.721 |
Ranger | 0.196 | 0.825 | 0.804 | 0.689 | 0.732 |
Xgboost | 0.244 | 0.755 | 0.756 | 0.596 | 0.547 |
Nnet | 0.199 | 0.775 | 0.802 | 0.610 | 0.728 |