Table 5 Full information about the developed ANN models.
Network Architecture | Layers | ||
---|---|---|---|
Input | Hidden | Output | |
Layers No | 1-layer | 1-layer | 1-layer |
Neurons No | 11-Neurons | 1 to 30 Neurons (It will be optimized) | 3-Neuron |
Connection pattern | Multilayer Feed-Forward Network |
Activation functions | Identity function \(\psi (u)\, = \,u\) | Hyperbolic Tangent Sigmoid function \(\psi (u) = \frac{{e^{u} - e^{{ - u}} }}{{e^{u} + e^{{ - u}} }}\) | Identity function \(\psi (u)\, = \,u\) |
---|---|---|---|
Training algorithm | Levenberg–Marquardt Backpropagation | ||
Data splitting | fivefold cross validation (70% training + 15% Validation + 15% Testing) | ||
Cost function | Root Mean Squared Error (RMSE) | ||
Addressing nominal variables | Dummy parameters are generated for the nominal input variables |