Table 4 Gross total resection versus residual tumor classification performances for both architectures, all input configurations, and over the validation and test sets.

From: Segmentation of glioblastomas in early post-operative multi-modal MRI with deep neural networks

Exp.

Data

Arch.

Patient-wise

Sensitivity

Specificity

bAcc

A

Val

nnU-Net

99.81±0.35

2.53±2.21

51.17±1.22

AGU-Net

79.70±6.69

68.01±10.43

73.86±4.94

Test

nnU-Net

100.00

4.55

52.27

AGU-Net

84.31

63.64

73.98

B

Val

nnU-Net

99.47±0.71

18.04±4.41

58.75±2.30

AGU-Net

81.25±6.47

71.01±5.36

76.13±4.12

Test

nnU-Net

98.04

45.45

71.75

AGU-Net

84.31

72.73

78.52

C

Val

nnU-Net

99.81±0.35

5.64±3.44

52.73±1.76

AGU-Net

79.29±10.08

74.00±11.13

76.64±4.87

Test

nnU-Net

100.00

27.27

63.64

AGU-Net

78.43

90.91

84.67

D

Val

nnU-Net

99.66±0.44

15.28±6.85

57.47±3.55

AGU-Net

82.80±5.27

73.00±14.63

77.90±6.44

Test

nnU-Net

100.00

40.91

70.45

AGU-Net

78.43

86.36

82.40

E

Val

nnU-Net

100.00

6.12±4.30

53.06±2.15

AGU-Net

85.61±4.83

72.63±9.39

79.12±4.60

Test

nnU-Net

100.00

27.27

63.64

AGU-Net

86.27

77.27

81.77