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Modulation recognition method 
of mixed signals based on cyclic 
spectrum projection
Weichao Yang , Ke Ren *, Yu Du , Jia Zheng , Yifan Ping , Sujun Wang , Xinquan Yang  & Li Li 

The signal in the receiver is mainly a combination of different modulation types due to the complex 
electromagnetic environment, which makes the modulation recognition of the mixed signal a hot 
topic in recent years. In response to the poor adaptability of existing mixed signals recognition 
methods, this paper proposes a new recognition method for mixed signals based on cyclic spectrum 
projection and deep neural network. Firstly, through theoretical derivation, we prove the feasibility 
of using cyclic spectrum for mixed communication signal identification. Then, we adopt grayscale 
projections on the two-dimensional cyclic spectrum as identifying representation. And a new 
nonlinear piecewise mapping and directed pseudo-clustering method are used to enhance the above-
mentioned grayscale images, which reduces the impact of energy ratios and symbol rates on signal 
identification. Finally, we use deep neural networks to extract deep abstract modulation information 
to achieve effective recognition of mixed signals. Simulation results show that the proposed method 
is robust against noise. When signal-to-noise ratio is not less than 0 dB, the average recognition rate is 
greater than 95%. Furthermore, this method exhibits good robustness towards the changes in signal 
symbol rates and energy ratios between mixed signals.

Modulation recognition of communication signal is to determine the modulation mode of signal under the 
condition of unknown or known a small amount of signal prior information. This technology has been widely 
used in the fields of military electronic reconnaissance, electromagnetic spectrum warfare and civil spectrum 
monitoring. After years of development, modulation recognition technology has formed a relatively complete 
theoretical system. In recent years, with the increasing complexity of the electromagnetic environment, the 
receiver receives no longer a single signal, but a mixed form of two or more signals. The mixed signals have 
the characteristics of time–frequency domain aliasing, and many existing methods are no longer applicable1–3. 
Therefore, more and more scholars begin to pay attention to the modulation recognition of mixed signals4–11.

The mixture of signals will inevitably bring about the complexity of recognition feature extraction. The 
method based on blind source separation (BSS) is an important approach to solve mixed signal recognition. 
In fact, such methods still belong to the category of single signal identification, and in the absence of any prior 
information, the BSS method can not effectively separate the signals with complete spectral aliasing12,13. In addi-
tion, the BSS method is often affected by the dual effects of noise and errors introduced by front-end separation 
algorithms, resulting in poor recognition performance.

In recent years, the successful application of artificial intelligence methods in single signal modulation recog-
nition has provided new ideas for this problem14–20. Some scholars have made many attempts and explorations 
in intelligent recognition of mixed signals21–26. Reference21,22 proposed a co-channel multi-signal modulation 
identification method based on deep learning capsule network. This type of method mainly takes advantage of 
the multi-mode processing and vector output of the capsule network. However, it is assumed that the signals 
are co-channel with different frequencies, and multiple signals are separable in the frequency domain, so they 
belong to the category of single-signal identification in a strict sense. References23–25 have all proposed co-channel 
mixed signal recognition methods based on convolutional neural network. The similarity is that the network 
input of the three methods is the time–frequency domain characteristics of mixed signals. The difference is that 
reference24 constructs multi-label convolutional neural network (MLCNN) for multi-label classification and 
multi-decision threshold optimization method based on output label decision, while reference25 makes use of 
the advantages of fast convergence speed and high recognition accuracy of ResNet. The advantage of this type 
of method is that it directly adopts the classical deep learning method to intelligently analyze and identify the 
time domain information of the signal. It is easily affected by noise, so the recognition robustness beyond the 
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training coverage signal-to-noise ratio is poor. To some extent, although the reference25 uses the feature dif-
ference of mixed signals to construct frequency domain motion and shear image enhancement to improve the 
anti-noise ability of the algorithm, the improvement space is still limited. In addition, the above three methods 
do not consider the changes of signal parameters such as energy ratio between signals, symbol rate, etc., so these 
methods have poor adaptability and mobility.

Cyclic spectrum is a feature insensitive to noise, many scholars have proposed modulation recognition meth-
ods for communication signals based on cyclic spectrum26–32, which have good anti-noise ability. Reference26–28 
belong to the category of single signal modulation recognition, and the influence of signal parameter transfor-
mation is not considered. The method proposed in reference29 needs to demodulate the signal, which is difficult 
to demodulate without prior information. In addition, the characteristics of the adopted signal, such as constel-
lation quadrant distribution, frequency tracking distribution distance and baseband data distribution distance, 
are easily affected by noise. Reference30 uses cyclic spectrum projection combined with deep neural networks to 
identify mixed signals, and enhances cyclic spectrum projection from an image processing perspective, such as 
flip transformation, gray scale transformation, image clipping, resolution transformation, standardization. This 
method does not consider the impact of changes in image texture position caused by signal parameter changes, 
and has not been analyzed and explained in subsequent simulations. Reference31 uses joint features such as 
high-order cumulants and cyclic spectra to achieve modulation recognition of dual mixed signals, including 
signals such as 2ASK (2 amplitude shift keying), 4ASK (4 amplitude Shift Keying), BPSK (binary phase shift 
keying), QPSK (quadrature phase shift keying), but still does not consider the influence of parameter changes 
such as energy ratio and symbol rate between signals. Reference32 uses cyclic spectrum cross-section features to 
achieve modulation recognition of mixed signals, rather than cyclic spectrum projection. In fact, cyclic spec-
trum projection has three-dimensional feature attributes, which contain more cyclic spectrum information and 
can effectively characterize the differences of mixed signals. Similar to intelligent methods, the above methods 
based on complete cyclic spectrum information do not comprehensively consider and evaluate the influence of 
all interference factors, resulting in poor stability and applicability of the algorithm.

In response to the above issues, this paper proposes a deep neural network recognition method based on 
cyclic spectrum projection, which converts one-dimensional signal modulation recognition problems into two-
dimensional cyclic spectrum image recognition problems. Firstly, we derive and analyze the cyclic spectrum 
characteristics of single signals and mixed signals in detail. We use grayscale projections of cyclic spectrum as 
data representation, and then adopt two novel feature enhancement methods, one is the nonlinear piecewise 
mapping which makes signal representation with different energy ratios tend towards consistency, reducing 
the impact of energy ratios on recognition performance; the other one is directed pseudo-clustering which 
eliminates spectral line spacing caused by symbol rates, avoiding effects from signal symbol rates on recognition 
performance. Based on enhanced cyclic spectrum grayscale images, we utilize the excellent multi-level detail 
extraction capabilities of residual neural network25 to achieve effective identification of several commonly used 
but difficult to distinguish phase modulated mixed signals in satellite communications. Simulation results show 
that the proposed method is insensitive to noise, and the average recognition rate is greater than 95% when the 
signal-to-noise ratio is not lower than 0 dB. Moreover, the proposed method has good adaptability to the changes 
in signal symbol rates and energy ratios between mixed signal.

Cyclic spectrum characteristics of mixed signals
In this paper, the mixed modulation recognition of BPSK, QPSK, and OQPSK (offset quadrature phase shift 
keying) signals, is studied under the same frequency and bandwidth. These three types of modulation signals 
are commonly used and difficult to distinguish in satellite communications system, such as Advanced Commu-
nications Technology Satellite (ACTS), Mobile User Objective System (MUOS) and Advanced Extremely High 
Frequency (AEHF)33. The three kinds of signals have many similar characteristics in the time–frequency domain. 
The problem of mixed double-signal modulation recognition, especially in the case of the same frequency, the 
same symbol rate and the uncertainty of the energy ratio, has been one of the recognized difficulties in the field 
of signal recognition.

This paper attempts to solve the mixed recognition problem of the above three signals from the signal cyclic 
spectrum domain. This section analyzes the cyclic spectrum characteristics and differences of single signal and 
mixed double-signal in detail.

Cyclic spectrum characteristics of single signal
In this paper we assume that the signal has been processed by channel correction and channel equalization. 
BPSK, QPSK and OQPSK signals can be expressed by a unified mathematical expression:

where c(t) =
∞
∑

n=−∞

cnq(t − nT − t0) , s(t) =
∞
∑

n=−∞

snq(t − nT − t0) , cn and sn are equal probability, and the 

value is ±1 , q(·) denotes rectangular pulse, T denotes symbol period, and 1
/

T is symbol rate, fc represents the 
carrier frequency, φ0 denotes the initial phase.

For the BPSK signal, s(t) = 0 . For the QPSK signal, c(t) and s(t) do not need to be changed. For OQPSK 

signal, c(t) =
∞
∑

n=−∞

cnq
(

t − nT − T
/

2− t0
)

 . The cyclic spectrum equation of the three signals is as follows:

(1)x(t) = c(t) cos
(

2πfct + φ0
)

− s(t) sin
(

2πfct + φ0
)
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where Q
(

f
)

=
sin (πfT)

πf  , n is an integer and nT  is an integer multiple of the symbol rate. E represents the signal 
energy, and the three signal cycle spectrums are shown in Figs. 1, 2 and 3.

Gaussian noise is not periodic, so it mainly exists in α = 0 section. In order to reduce the impact of noise, 
α = 0 section of cyclic spectrum is shielded here and in subsequent feature analysis.

(1)	 When α = n
T , the effective values of the cyclic spectrum are mainly distributed near f=± fc , and the cyclic 

spectrum is symmetric, so only this range 
(

α>0,f ≥ 0
)

 is analyzed, and other regions also have similar 
characteristics.
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Figure 1.   Cyclic spectrum of BPSK signal.

Figure 2.   Cyclic spectrum of QPSK signal. 
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Figure 3.   Cyclic spectrum of OQPSK signal.
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/

4T
)

∣

∣

∣
=

∣

∣

∣
S
2fc±1/T
OQPSK

(

1
/

4T
)

∣

∣

∣
≈ E

4T

∣

∣Q
(

1
4T

)
∣

∣

∣

∣Q
(

3
4T

)
∣

∣ ≈ 2TE
3π2  , QPSK signal does not have theo-

retical value at this cyclic frequency.
	 4.	 When α = 2fc ±

1
T  , f= 1

2T .

		  
∣

∣

∣
S
2fc±1/T
BPSK

(

1
/

2T
)

∣

∣

∣
=

∣

∣

∣
S
2fc±1/T
OQPSK

(

1
/

2T
)

∣

∣

∣
≈ E

4T |Q(0)|
∣

∣Q
(

1
T

)∣

∣ ≈ 0 , QPSK signal does not have theoretical 
value at this cyclic frequency.

	 5.	 When α = 2fc ±
1
T  , f= 3

4T .

		  
∣

∣

∣
S
2fc±1/T
BPSK

(

3
/

4T
)

∣

∣

∣
=

∣

∣

∣
S
2fc±1/T
OQPSK

(

3
/

4T
)

∣

∣

∣
≈ E

4T

∣

∣Q
(

1
4T

)∣

∣

∣

∣Q
(

5
4T

)∣

∣ ≈ 2TE
5π2  , QPSK signal does not have theo-

retical value at this cyclic frequency.
	 6.	 When α = 2fc ±

1
T  , f= 1

T .

		  
∣

∣

∣
S
2fc±1/T
BPSK

(

1
/

T
)

∣

∣

∣
=

∣

∣

∣
S
2fc±1/T
OQPSK

(

1
/

T
)

∣

∣

∣
≈ E

4T

∣

∣Q
(

1
2T

)∣

∣

∣

∣Q
(

3
2T

)∣

∣ ≈ TE
3π2 , OQPSK signal does not have theo-

retical value at this cyclic frequency.
	 7.	 When α = 2fc ±

2
T  , f= 0.

		  
∣

∣

∣
S
2fc±2/T
BPSK (0)

∣

∣

∣
≈ E

4T

∣

∣Q
(

1
T

)∣

∣

2
≈ 0 , QPSK signal and OQPSK signal have no theoretical value at this cyclic 

frequency.
	 8.	 When α = 2fc ±

2
T  , f= 1

4T .

		  
∣

∣

∣
S
2fc±2/T
BPSK

(

1
/

4T
)

∣

∣

∣
≈ E

4T

∣

∣Q
(

3
4T

)∣

∣

∣

∣Q
(

5
4T

)∣

∣ ≈ 2TE
15π2 , QPSK signal and OQPSK signal have no theoretical 

value at this cyclic frequency.
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	 9.	 When α = 2fc ±
2
T

 , f= 1
2T .

		  
∣

∣

∣
S
2fc±2/T
BPSK

(

1
/

2T
)

∣

∣

∣
≈ E

4T

∣

∣Q
(

1
2T

)∣

∣

∣

∣Q
(

3
2T

)∣

∣ ≈ 2TE
3π2  , QPSK signal and OQPSK signal have no theoretical 

value at this cyclic frequency.
	10.	 When α = 2fc ±

2
T  , f= 3

4T .

		  
∣

∣

∣
S
2fc±2/T
BPSK

(

3
/

4T
)

∣

∣

∣
≈ E

4T

∣

∣Q
(

1
4T

)∣

∣

∣

∣Q
(

7
4T

)∣

∣ ≈ 2TE
7π2  , QPSK signal and OQPSK signal have no theoretical 

value at this cyclic frequency.
	11.	 When α = 2fc ±

2
T  , f= 1

T .
		  

∣

∣

∣
S
2fc±2/T
BPSK

(

1
/

T
)

∣

∣

∣
≈ E

4T |Q(0)|
∣

∣Q
(

2
T

)∣

∣ ≈ 0 , QPSK signal and OQPSK signal have no theoretical value at 
this cyclic frequency.

	12.	 When α = 2fc ±
3
T  , f= 0.

		  
∣

∣

∣
S
2fc±3/T
BPSK (0)

∣

∣

∣
=

∣

∣

∣
S
2fc±3/T
OQPSK (0)

∣

∣

∣
≈ E

4T

∣

∣Q
(

3
2T

)∣

∣

2
≈ TE

9π2 , QPSK signal does not have theoretical value at this 
cyclic frequency.

	13.	 When α = 2fc ±
3
T  , f= 1

4T .

		   
∣

∣

∣
S
2fc±3/T
BPSK

(

1
/

4T
)

∣

∣

∣
=

∣

∣

∣
S
2fc±3/T
OQPSK

(

1
/

4T
)

∣

∣

∣
≈ E

4T

∣

∣Q
(

7
4T

)∣

∣

∣

∣Q
(

5
4T

)∣

∣ ≈ 2TE
35π2 , QPSK signal does not have the-

oretical value at this cyclic frequency.
	14.	 When α = 2fc ±

3
T  , f= 1

2T .

		  
∣

∣

∣
S
2fc±3/T
BPSK

(

1
/

2T
)

∣

∣

∣
=

∣

∣

∣
S
2fc±3/T
OQPSK

(

1
/

2T
)

∣

∣

∣
≈ E

4T

∣

∣Q
(

2
T

)∣

∣

∣

∣Q
(

1
T

)∣

∣ ≈ 0 , QPSK signal does not have theoretical 
value at this cyclic frequency.

	15.	 When α = 2fc ±
3
T  , f= 3

4T .

		  
∣

∣

∣
S
2fc±3/T
BPSK

(

3
/

4T
)

∣

∣

∣
=

∣

∣

∣
S
2fc±3/T
OQPSK

(

3
/

4T
)

∣

∣

∣
≈ E

4T

∣

∣Q
(

9
4T

)∣

∣

∣

∣Q
(

3
4T

)∣

∣ ≈ 2TE
27π2 , QPSK signal does not have the-

oretical value at this cyclic frequency.
	16.	 When α = 2fc ±

3
T  , f= 1

T .

		  
∣

∣

∣
S
2fc±3/T
BPSK

(

1
/

T
)

∣

∣

∣
=

∣

∣

∣
S
2fc±3/T
OQPSK

(

1
/

T
)

∣

∣

∣
≈ E

4T

∣

∣Q
(

5
2T

)∣

∣

∣

∣Q
(

1
2T

)∣

∣ ≈ TE
5π2  , QPSK signal does not have theo-

retical value at this cyclic frequency.
	17.	 When α ≥ 2fc+

4
T  or α ≤ 2fc−

4
T .

		  
∣

∣SαBPSK
(

f
)∣

∣=
∣

∣SαOQPSK
(

f
)∣

∣ ≪ TE
π
2  , this case can be ignored, and QPSK signal does not have theoretical 

value at this cyclic frequency.

According to the above analysis, there is no effective cyclic spectrum value of QPSK signal in the whole 
section of α = 2fc ±

n
T  (n is an integer). In section α = 2fc , when f ≥ 0 , the OQPSK signal does not have an 

effective cyclic spectrum value, and the cyclic spectrum value of BPSK signal decreases monotonically. In sec-
tion α = 2fc ±

1
T  and α = 2fc ±

3
T  , when interval f ∈

[

0,1
/

T
]

 , the cyclic spectral values of BPSK and OQPSK 
signals show an inverse parabola distribution that decreases first and then increases. In section α = 2fc ±

2
T and 

interval f ∈
[

0,1
/

T
]

 , there is no effective cyclic spectrum of OQPSK signals, and the cyclic spectrum of BPSK 
signals increases first and then decreases in parabolic distribution. When α ≥ 2fc+

4
T  or α ≤ 2fc −

4
T  , the cyclic 

spectrum values of BPSK signal and OQPSK signal are small and ignored.

Cyclic spectrum characteristics of mixed double‑signal
Due to space constraints, BPSK + QPSK is taken as an example to analyze the cyclic spectrum characteristics of 
mixed signals. The cyclic spectrum equation of BPSK + QPSK is as follows:

where the variable subscript symbols b and q respectively represent BPSK and QPSK signals. For the mixed 
signals with the same frequency and rate studied in this paper, fcb=fcq , Tb=Tq , Qb=Qq . The cyclic spectrum of 
mixed double-signal is shown in Fig. 4, in which the energy of signals is equal. Similar to the characteristics of 
the single signal cyclic spectrum, the noise here also has a cross section. The cyclic spectrum values of the signal 
are suppressed to some extent due to the noise. To avoid the influence of noise, the cyclic spectrum cross section 
at α = 0 is shielded, and the cyclic spectrum characteristics of each signal are highlighted, as shown in Fig. 5.

In the modulation recognition of mixed signals with the same frequency and rate, the energy ratio between 
signals is a key factor affecting the recognition effect. Therefore, according to the theoretical value of the signal 
cyclic spectrum in section “Cyclic spectrum characteristics of single signal”, this section makes a theoretical 

(5)
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
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






































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�

, whenα =
n

Tb
Eq

4Tq

�

Qq

�

f − fcq +
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analysis of the characteristics of the cyclic spectrum when the energy ratio between mixed signals is 1:1, 1:4 and 
4:1. This part can be regarded as a general analysis of the energy ratio between signals from 1:1 to 1:4 or 1:1 to 
4:1. When the energy ratio exceeds 1:4 or 4:1, the signal with high energy is less affected and can be regarded 
as a single signal, which is beyond the scope of this paper and will not be discussed here. See Table 1 for details, 
EBPSK , EQPSK and EOQPSK respectively represent the energy of BPSK, QPSK and OQPSK signals in mixed signal.

As can be seen from Table 1, the cyclic spectrum contains abundant individual characteristics of mixed 
signals, so it is an effective recognition feature. The problem of one-dimensional signal modulation recognition 
is transformed into that of two-dimensional image recognition. Here, two-dimensional grayscale projection is 
used to represent the characteristics of the cyclic spectrum, and the corresponding two-dimensional grayscale 
projection of Fig. 5 is shown in Fig. 6.

It can be seen from the cyclic spectrum equation and Fig. 6 that the cyclic spectrum features are symmetrical. 
In order to reduce the amount of calculation, part of its region ( α<0,f ≤ 0 ) is taken as the recognition feature 
domain, as shown in Fig. 7.

Image feature enhancement
From the cyclic spectrum of mixed signals and Table 1, it can be seen that the effective recognition features exist 
at a certain type of frequency, while the features in Fig. 6 and Fig. 7 are chaotic, with more redundant informa-
tion, and the characteristic values of mixed signals with different energy ratios are different. In order to enhance 
the readability and consistency of image features, a new nonlinear piecewise mapping method is proposed to 
preprocess images. In addition, according to the mixed signal cyclic spectrum equation, when the receiver 
intermediate frequency(IF) ( fc ) is fixed, the symbol rate ( 1

/

T ) is the key factor affecting the distribution of the 
recognition features in the projection map, as shown by the red double arrows in Fig. 7. In order to enhance the 
adaptability of the recognition feature field to the change of the symbol rate, a directed pseudo-clustering method 
is proposed to eliminate the impact of the change of the symbol rate.

Figure 4.   Cyclic spectrum of BPSK + QPSK.

Figure 5.   Cyclic spectrum ( α  = 0 ) of BPSK + QPSK.
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Serial number Frequency point Type BPSK + QPSK BPSK + OQPSK QPSK + OQPSK

1 α = 1
T

f=fc

Theoretical value TEBPSK
/

π
2+TEQPSK

/

π
2 TEBPSK

/

π
2 TEQPSK

/

π
2

Maximum normalized 
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0.81 1:1 0.41 1:1 1.00

1:4 1.00 1:4 0.20 1:4 0.25

4:1 0.51 4:1 0.41 4:1 1.00

2 α = 1
T

f=fc ±
α
4

Theoretical value 2TEBPSK
/

3π2+2TEQPSK
/

3π2 2TEBPSK
/

3π2 2TEQPSK
/

3π2

Maximum normalized 
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0.54 1:1 0.27 1:1 0.67

1:4 0.67 1:4 0.13 1:4 0.17

4:1 0.34 4:1 0.27 4:1 0.67

3 α = 1
T

f=fc ±
α
2

Theoretical value 0 0 0

Maximum normalized 
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0 1:1 0 1:1 0

1:4 0 1:4 0 1:4 0

4:1 0 4:1 0 4:1 0

4 α = 1
T

f=fc ±
3α
4

Theoretical value 2TEBPSK
/

5π2+2TEQPSK
/

5π2 2TEBPSK
/

5π2 2TEQPSK
/

5π2

Maximum normalized 
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0.32 1:1 0.16 1:1 0.40

1:4 0.40 1:4 0.08 1:4 0.10

4:1 0.20 4:1 0.16 4:1 0.40

5 α = 1
T

f=fc ± α

Theoretical value TEBPSK
/

3π2+TEQPSK
/

3π2 TEBPSK
/

3π2 TEQPSK
/

3π2

Maximum normalized 
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0.27 1:1 0.14 1:1 0.33

1:4 0.33 1:4 0.07 1:4 0.08

4:1 0.17 4:1 0.14 4:1 0.33

6 α = 2
T

f=fc

Theoretical value 0 0 0

Maximum normalized 
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0 1:1 0 1:1 0

1:4 0 1:4 0 1:4 0

4:1 0 4:1 0 4:1 0

7 α = 2
T

f=fc ±
α
4

Theoretical value TEBPSK
/

3π2+TEQPSK
/

3π2 TEBPSK
/

3π2+TEOQPSK
/

3π2 TEQPSK
/

3π2+TEOQPSK
/

3π2

Maximum normalized 
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0.27 1:1 0.27 1:1 0.67

1:4 0.33 1:4 0.33 1:4 0.42

4:1 0.17 4:1 0.17 4:1 0.42

8 α = 2
T

f=fc ±
α
2

Theoretical value 0 0 0

Maximum normalized 
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0 1:1 0 1:1 0

1:4 0 1:4 0 1:4 0

4:1 0 4:1 0 4:1 0

9 α = 2
T

f=fc ±
3α
4

Theoretical value TEBPSK
/

10π2+TEQPSK
/

10π2 TEBPSK
/

10π2+TEOQPSK
/

10π2 TEQPSK
/

10π2+TEOQPSK
/

10π2

Maximum normalized 
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0.08 1:1 0.08 1:1 0.20

1:4 0.10 1:4 0.10 1:4 0.13

4:1 0.05 4:1 0.05 4:1 0.13

10 α = 2
T

f=fc ± α

Theoretical value 0 0 0

Maximum normalized 
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0 1:1 0 1:1 0

1:4 0 1:4 0 1:4 0

4:1 0 4:1 0 4:1 0

11 α ≥ 3
T

Theoretical value ≪ TE
/

π
2 ≪ TE

/

π
2 ≪ TE

/

π
2

Maximum normalized 
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 << 0.1 1:1 << 0.1 1:1 << 0.1

1:4 << 0.1 1:4 << 0.1 1:4 << 0.1

4:1 << 0.1 4:1 << 0.1 4:1 << 0.1

Continued
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Serial number Frequency point Type BPSK + QPSK BPSK + OQPSK QPSK + OQPSK

12 α = 2fc
f= 0

Theoretical value TEBPSK
/

4 TEBPSK
/

4 /

Maximum normalized
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 1.00 1:1 1.00 1:1 /

1:4 0.49 1:4 0.49 1:4 /

4:1 1.00 4:1 1.00 4:1 /

13 α = 2fc ±
1
T

f= 0

Theoretical value TEBPSK
/

π
2 TEBPSK

/

π
2+TEOQPSK

/

π
2 TEOQPSK

/

π
2

Maximum normalized
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0.41 1:1 0.81 1:1 1.00

1:4 0.20 1:4 1.00 1:4 1.00

4:1 0.41 4:1 0.51 4:1 0.25

14
α = 2fc ±

1
T

f= 1
4T

Theoretical value 2TEBPSK
/

3π2 2TEBPSK
/

3π2+2TEOQPSK
/

3π2 2TEOQPSK
/

3π2

Maximum normalized
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0.27 1:1 0.54 1:1 0.67

1:4 0.13 1:4 0.67 1:4 0.67

4:1 0.27 4:1 0.34 4:1 0.17

15 α = 2fc ±
1
T f=

1
2T

Theoretical value 0 0 0

Maximum normalized
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0 1:1 0 1:1 0

1:4 0 1:4 0 1:4 0

4:1 0 4:1 0 4:1 0

16 α = 2fc ±
1
T f= 3

4T

Theoretical value 2TEBPSK
/

5π2 2TEBPSK
/

5π2+2TEOQPSK
/

5π2 2TEOQPSK
/

5π2

Maximum normalized
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0.16 1:1 0.32 1:1 0.40

1:4 0.08 1:4 0.40 1:4 0.40

4:1 0.16 4:1 0.20 4:1 0.10

17 α = 2fc ±
1
T

f= 1
T

Theoretical value TEBPSK
/

3π2 TEBPSK
/

3π2+TEOQPSK
/

3π2 TEOQPSK
/

3π2

Maximum normalized
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0.14 1:1 0.27 1:1 0.33

1:4 0.07 1:4 0.33 1:4 0.33

4:1 0.14 4:1 0.17 4:1 0.08

18 α = 2fc ±
2
T

f= 0

Theoretical value 0 0 /

Maximum normalized
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0 1:1 0 1:1 /

1:4 0 1:4 0 1:4 /

4:1 0 4:1 0 4:1 /

19 α = 2fc ±
2
T f= 1

4T

Theoretical value 2TEBPSK
/

15π2 2TEBPSK
/

15π2 /

Maximum normalized
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0.05 1:1 0.05 1:1 /

1:4 0.03 1:4 0.03 1:4 /

4:1 0.05 4:1 0.05 4:1 /

20 α = 2fc ±
2
T f= 1

2T

Theoretical value 2TEBPSK
/

3π2 2TEBPSK
/

3π2 /

Maximum normalized
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0.27 1:1 0.27 1:1 /

1:4 0.13 1:4 0.13 1:4 /

4:1 0.27 4:1 0.27 4:1 /

21 α = 2fc ±
2
T f= 3

4T

Theoretical value 2TEBPSK
/

7π2 2TEBPSK
/

7π2 /

Maximum normalized
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0.12 1:1 0.12 1:1 /

1:4 0.06 1:4 0.06 1:4 /

4:1 0.12 4:1 0.12 4:1 /

22 α = 2fc ±
2
T

f= 1
T

Theoretical value 0 0 /

Maximum normalized
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 0 1:1 0 1:1 /

1:4 0 1:4 0 1:4 /

4:1 0 4:1 0 4:1 /

Continued
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Serial number Frequency point Type BPSK + QPSK BPSK + OQPSK QPSK + OQPSK

23 α< 2fc−
2
T α> 2fc+

2
T

Theoretical value ≪ TE
/

π
2 ≪ TE

/

π
2 ≪ TE

/

π
2

Maximum normalized
spectral value

EBPSK:EQPSK / EBPSK:EOQPSK / EQPSK:EOQPSK /

1:1 ≪ 0.1 1:1 ≪ 0.1 1:1 ≪ 0.1

1:4 ≪ 0.1 1:4 ≪ 0.1 1:4 ≪ 0.1

4:1 ≪ 0.1 4:1 ≪ 0.1 4:1 ≪ 0.1

Table 1.   Theoretical value of cyclic spectrum at different frequency points of mixed double-signal.

Figure 6.   Grayscale projection of BPSK + QPSK cyclic spectrum.

Figure 7.   Part area ( α<0,f ≤ 0 ) of grayscale projection image.
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Nonlinear piecewise mapping
The purpose of nonlinear piecewise mapping is to approximate the consistency of signal characteristics with 
different energy ratios, reduce the computational cost of subsequent recognition networks, and improve the effi-
ciency of recognition networks. For the grayscale image with maximum normalization, the nonlinear piecewise 
mapping method follows the following principles:

In the above mapping, S represents the original normalized cyclic spectrum value, and S′ represents the 
mapped spectrum value. The above processing process is shown in Fig. 8, and the figure on the right is the result 
after processing. It can be seen from the figure that the difference characteristics of signal have been significantly 
enhanced.

Directed pseudo‑clustering
The purpose of directed pseudo-clustering is to eliminate the spectral line spacing caused by the symbol rate. 
Because it draws lessons from the idea of clustering, it also has the requirement of direction, so it is called 
directed pseudo-clustering. It is assumed that the cyclic spectrum projection after nonlinear piecewise mapping 
is represented by S′(m,n) , where m = 1,2, . . .M, n = 1,2, . . .N , whose directed pseudo-clustering processing 
flow is shown in Fig. 9.

The processing process of Fig. 9 is shown in Fig. 10, and the right figure shows the results after processing. 
As can be seen from the figure, all the spectral lines in Fig. 8 converge towards the direction of the zero cyclic 
frequency axis, eliminating the spectral line spacing caused by the symbol rate, so the characteristic image is not 
affected by the change of symbol rate.

Figure 11 shows the enhanced grayscale projection image of cyclic spectrum when the energy of three types 
of mixed signals is equal. It can be seen from the figure that there are obvious differences between the three types 
of signals. The grayscale image is an effective recognition feature, which can be used for modulation recognition 
of mixed double-signals.

Figure 8.   Piecewise map of BPSK + QPSK signal cyclic spectrum projection.
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Deep residual neural network
ResNet is a kind of network structure proposed in 2015. It refers to adding the idea of residual learning into the 
traditional convolutional neural network, which solves the problems of gradient dispersion and accuracy decline 
(training set) in the deep network.

After years of development, ResNet has derived a variety of network structures with different convolution 
layer depths, such as ResNet50 and ResNet101. This paper adopts ResNet50 structure, which is mainly composed 
of multiple residual modules25,30, and its structure is shown in Fig. 12. The ResNet50 network structure consists 
of one full connection layer and 49 convolution layers, and the network model runs in six stages. The first stage 
includes convolution, batch regularization, activation function and maximum pooling operation. The second 
to fifth stages include convolution residual module and constant residual module. The sixth stage includes the 
global average pooling layer operation and the softmax classifier for the full connection layer.

Figure 9.   Processing flow of directed pseudo-clustering method.

Figure 10.   Schematic diagram of directed pseudo-clustering processing.
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Figure 11.   Cyclic spectrum projection feature enhancement image of three kinds of mixed double-signals. (a) 
BPSK + QPSK. (b) BPSK + OQPSK. (c) QPSK + OQPSK.
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Figure 12.   Structure diagram of ResNet50.
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In this paper, the modulation recognition based on ResNet is a supervised learning method. The input of the 
network in Fig. 12 is the grayscale image after the enhanced cyclic spectrum projection of the three types of mixed 
signals as shown in Fig. 11. The grayscale image has undergone multi-stage convolution and pooling operations 
of the residual network. Finally, the network carries out nonlinear modulation type mapping according to its 
characteristics, and outputs the corresponding three modulation types of mixed signals.

Simulation test and analysis
In order to verify the effectiveness of the proposed method, a simulation evaluation is carried out based on MAT-
LAB software platform and HP Z840 workstation. In this paper, we simulate and generate three types of mixed 
signals, i.e., BPSK + QPSK, BPSK + OQPSK and OQPSK, to verify the performance of the proposed method. The 
parameters of simulation signals are set as follows: intermediate frequency is 150 kHz, symbol rate is 50 k bit/s, 
sampling frequency is 1.2 MHz34,35. The signals are all formed by sine–cosine rolling drop method, the forming 
coefficient is 0.35, and the number of signal points is 8192.

In the experiment, we resize the input images to a fixed size of 224*224*3, which matched the input shape of 
the original ResNet50 network model. So the network parameters of ResNet50 in the experiment are consist-
ent with the original model. In order to train the network, we simulate and generate 1000 signals for each type 
of mixed signal, and use their enhanced cyclic spectrum graphs as training samples. There are a total of 3000 
training samples for the three types of mixed signals for training. All the training samples are noise-free, and 
the energy ratio of the mixed signals is fixed at 1:1. We use these training data to train the network, and test the 
trained network with different test data to evaluate the performance of the proposed method.

Analysis of the influence of noise on the performance of the method
In order to have a clearer and more specific understanding of the recognition, the simulation analysis of the 
impact of noise on each type of mixed signal was carried out.

In this section, we set the energy ratio of each type of mixed signal to 1:1, and the signal-to-noise ratio (SNR) 
ranges from − 5 to 10 dB with a step of 1 dB. For each SNR, there are 200 cyclic spectrum graphs on each signal 
type, and a total of 9600 graphs for the three types of mixed signals are used as test samples. The test results are 
shown in Fig. 13.

As can be seen from the Fig. 13, when SNR is no less than 0 dB, the recognition rate is greater than 95%. 
Among the above three kinds of mixed signals, BPSK + QPSK signal has significantly better recognition perfor-
mance than other signals. The reason is that the individual characteristics of the mixed signals with the same 
energy are the most obvious after enhanced processing. In addition, experimental results show that the proposed 
method has good generalization and noise suppression ability.

Analysis of the influence of energy ratio on the performance of the method
For mixed signals, different energy ratios can lead to different characteristics of their mixed features, so the 
energy ratio is the most important factor affecting the recognition of mixed signals. This section investigates 
the influence of different energy ratios on the method. On the basis of the test samples in section “Analysis of 
the influence of noise on the performance of the method”, the test samples under the different energy ratios of 
1:2, 2:1, 1:3, 3:1, 1:4 and 4:1 are added. A total of 57,600 samples are collected. The average recognition results 
of three types of mixed signals under different energy ratios are shown in Fig. 14.

As can be seen from Fig. 14, the average recognition rate of three types of mixed signals is slightly different 
when the energy ratio is different. On the whole, when the SNR is greater than − 2 dB, the average recogni-
tion rate of the six energy ratio cases is greater than 90%. It shows that nonlinear piecewise mapping in feature 
enhancement weakens the influence of energy ratio to a certain extent, and effectively improves the adaptability 
of the algorithm.

To further demonstrate the effectiveness of the proposed image feature enhancement method under different 
energy ratios, we present the experimental results without image enhancement in Fig. 15. In this experiment, 
both the training samples and the test samples of the compared method are the original cyclic spectrum graphs 

Figure 13.   Recognition results under different SNR.
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without image enhancement. The rest of the experimental settings are consistent with those in Fig. 14. The 
experimental results in Fig. 15 are the average recognition results of the three types of mixed signals under dif-
ferent energy ratios. It can be seen from the Fig. 15 that the recognition rate of the mixed signals is significantly 
improved after image enhancement, which proves that the proposed image feature enhancement algorithm can 
effectively enhance the feature separability of cyclic spectrum graph.

Analysis of the influence of symbol rate on the performance of the method
In the process of signal reception, RF signal is down converted to fixed IF by the receiver, and then the symbol 
rate of the signal becomes one of the main factors affecting the performance of modulation recognition. This 
section analyzes the influence of different symbol rates on the method. In this section, the symbol rate of the test 

Figure 14.   Recognition results of different energy ratios.

Figure 15.   Average recognition results of different energy ratios without image feature enhancement.

Figure 16.   Recognition results of different symbol rates.
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samples is changed to 60 k bit/s, and the other parameter settings of the test samples are consistent with those in 
section “Analysis of the influence of noise on the performance of the method”. The results are shown in Fig. 16.

It can be seen from Fig. 16 that the recognition performance is roughly equivalent under different symbol 
rates, which indicates that the method in this paper is insensitive to symbol rate transformation, and also indi-
rectly proves the effectiveness of the directed pseudo-clustering method in feature enhancement. The proposed 
method has good robustness and adaptability.

To further demonstrate the effectiveness of the proposed image feature enhancement method under dif-
ferent symbol rates, we also present the experimental results without image enhancement in Fig. 17. In this 
experiment, both the training samples and the test samples are the original cyclic spectrum graphs without 
image enhancement. The rest of the experimental settings are consistent with those in Fig. 16. The experimental 
results in Fig. 17 are the average recognition results of the three types of mixed signals under different symbol 
rates. As shown in Fig. 17, image enhancement method leads to a remarkable improvement in the recognition 
rate of the mixed signals.

Performance comparison with existing methods
In order to have a more comprehensive evaluation of the method, this section compares the method in this paper 
with the reference25 and30. The training samples in this paper are used to train the methods proposed in25 and30. 
The test samples include all the samples in sections “Analysis of the influence of noise on the performance of 
the method”–“Analysis of the influence of symbol rate on the performance of the method”. Figure 18 shows the 
average recognition results of the three methods with different energy ratios and symbol rates.

According to Fig. 18, the recognition performance of reference30 is better than that of reference25 at low SNR, 
because the cyclic spectrum after dimension reduction has good anti-noise characteristics. In the whole SNR 
range, the recognition results of the proposed method are superior to those in25 and30. ResNet is used in all three 
methods, indicating that the feature domain and feature enhancement method in this paper play a key role, and 
the proposed method has better recognition performance and adaptability.

Figure 17.   Average recognition results of different symbol rates without image feature enhancement.

Figure 18.   Average recognition results of different methods.
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Conclusion
Based on the insensitivity of cyclic spectrum projection to noise, a mixed signal recognition feature domain is 
constructed, and two new methods, namely nonlinear piecewise mapping and directed pseudo-clustering, are 
proposed to enhance the feature domain from different dimensions. On this basis, ResNet50 is used to carry 
out in-depth intelligent feature analysis and classification of the feature domain. Three kinds of common mixed 
double-signals in satellite communication are recognized effectively, and the simulation results prove the effec-
tiveness of this method. In addition, ResNet50 model is mature and widely used, so the method in this paper 
is easy to implement in engineering. In this paper, the interference of adjacent channels is mainly considered, 
and the main form is the mixture of two modulation types of signals. For three or more mixed signals, further 
research will be conducted in the follow-up work.

Data availability
The datasets used during the current study available from the corresponding author on reasonable request.
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