Table 4 Performance comparison with state-of-the-art architectures in the ISBI challenge.
Approach | Modalities | CNN type | DSC | PPV | TPR | LFPR | LTPR | Submission score |
---|---|---|---|---|---|---|---|---|
2.5D Tiramisu17 | FLAIR, T1w, T2w, PD | 2.5D | 0.64 | 0.91 | 0.53 | 0.12 | 0.52 | 93.358 |
ALL-NET18 | FLAIR, T1w, T2w | 3D | 0.63 | 0.91 | – | 0.12 | 0.533 | 93.32 |
nnUNet19 | FLAIR, T1w, T2w, PD | 3D cascade | 0.69 | 0.85 | 0.61 | 0.17 | 0.55 | 93.09 |
nnUNet20 | FLAIR, T1w, T2w, PD | 3D | 0.68 | 0.86 | 0.60 | 0.16 | 0.54 | 93.03 |
DeepLesionBrain21 | FLAIR & T1w | 3D | 0.65 | 0.89 | 0.55 | 0.13 | 0.49 | 92.85 |
Multi-branch U-Net (proposed) | FLAIR, T1w, T2w | 2D | 0.64 | 0.85 | 0.56 | 0.20 | 0.55 | 92.661 |
IMAGINE22 | FLAIR, T1w, T2w, PD | 3D | 0.58 | 0.92 | 0.46 | 0.09 | 0.41 | 92.49 |
Self-adaptive network 24 | FLAIR. T1w, T2w, PD | 3D | 0.68 | 0.78 | 0.65 | 0.27 | 0.60 | 92.41 |
Multi-branch ResNet 25 | FLAIR, T1w, T2w | 2D | 0.61 | 0.90 | 0.49 | 0.14 | 0.41 | 92.12 |
Attention-Based CNN 26 | FLAIR, T1w | 3D | 0.64 | – | – | 0.39 | 0.45 | – |