Table 2 Some cdf’s of the new family based on different T distributions.

From: A new (T-X\(^\theta\)) family of distributions: properties, discretization and estimation with applications

Distribution of t

cdf of t

G(x)

Range

Beta

\(I_{t}(\alpha , \beta )\)

\(I_{x^{\theta }F(x)}(\alpha , \beta )\)

(0, 1)

Kumaraswamy

\(1-(1-t^{\alpha })^{\beta }\)

\(1-(1-(x^{\theta }F(x))^{\alpha })^{\beta }\)

(0, 1)

Exponential

\(1- e^{- \alpha t}\)

\(1- e^{-\alpha x^{\theta }F(x)}\)

\((0,\infty )\)

Weibull

\(1- e^{- \frac{t^{\lambda }}{\beta }}\)

\(1- e^{- \frac{(x^{\theta }F(x))^{\lambda }}{\beta }}\)

\((0,\infty )\)

Lomax

\(1-(1+\beta t)^{-\alpha }\)

\(1-(1+\beta x^{\theta }F(x))^{-\alpha }\)

\((0,\infty )\)

Fréchet

\(e^{-\left( \frac{t}{\delta }\right) ^{-\kappa }}\)

\(e^{-\left( \frac{x^{\theta }F(x)}{\delta }\right) ^{-\kappa }}\)

\((0,\infty )\)

Burr

\(1-(1+ t^{\alpha })^{-\beta }\)

\(1-(1+ (x^{\theta }F(x))^{\alpha })^{-\beta }\)

\((0,\infty )\)

Log-logistic

\({1}/\left( {1+({t}/{\alpha })^{-\beta }}\right)\)

\({1}/\left( {1+({x^{\theta }F(x)}/{\alpha })^{-\beta }}\right)\)

\((0,\infty )\)

Gamma

\({\gamma \left( \alpha , \beta t\right) }/{\Gamma (\alpha )}\)

\({\gamma \left( \alpha , \beta x^{\theta }F(x)\right) }/{\Gamma (\alpha )}\)

\((0,\infty )\)

Log-normal

\(\dfrac{1}{2}\left[ 1+\phi \left( \dfrac{\ln t-\mu }{\sigma \sqrt{2}}\right) \right]\)

\(\dfrac{1}{2}\left[ 1+\phi \left( \dfrac{\ln (x^{\theta }F(x))-\mu }{\sigma \sqrt{2}}\right) \right]\)

\((0,\infty )\)