Table 3 Some members of the T-X\(^{\theta }\) family.

From: A new (T-X\(^\theta\)) family of distributions: properties, discretization and estimation with applications

Distribution of x

cdf

Range of x

Abbreviation

Uniform-X \(^{\theta }\) beta \(^{1}\)

\(I_{x^{\theta +1} }(\alpha , \beta )\)

\(0<x<1\)

U-X\(^{\theta }\)B

Beta-X\(^{\theta }\) uniform

\(x^{\theta }\left( I_{x }(\alpha , \beta ) \right)\)

\(0<x<1\)

B-X\(^{\theta }\)U

Beta-X\(^{\theta }\) Kumaraswamy

\(I_{x^{\theta } \left( 1-\left( 1-x^{\lambda }\right) ^{\gamma }\right) }(\alpha ,\beta )\)

\(0<x<1\)

B-X\(^{\theta }\)Ku

Exponential-X\(^{\theta }\) gamma

\(1-e^{-\frac{\lambda x^{\theta } \gamma (\alpha ,\frac{x}{\beta })}{\Gamma (\alpha )}}\)

\(x>0\)

E-X\(^{\theta }\)G

Gamma-X\(^{\theta }\) Exponential

\(\dfrac{1}{\Gamma (\alpha )}{\gamma \left( \alpha ,\frac{x^{\theta }\left( 1-e^{- x}\right) }{\beta }\right) }\)

\(x>0\)

G-X\(^{\theta }\)E

Gamma-X\(^{\theta }\) Lomax

\(\dfrac{1}{\Gamma (\alpha )}{\gamma \left( \alpha ,\frac{\left( 1-(x+1)^{-c}\right) x^{\theta }}{\beta }\right) }\)

\(x>0\)

G-\(X^{\theta }\)L

Burr-X\(^{\theta }\) Exponential

\(1-\left( 1+x^{\theta }\left( 1-e^{-\alpha x}\right) \right) ^{-\beta }\)

\(x>0\)

Burr\(X^{\theta }\)E