Table 8 Some pmfs of the DE-X\(^{\theta }\) family based on different X distributions.

From: A new (T-X\(^\theta\)) family of distributions: properties, discretization and estimation with applications

Distribution of x

pmf

Abbreviation

Exponential

\(e^{-\alpha x^{\theta } \left[ 1-e^{- \beta x}\right] } - e^{-\alpha (x+1)^{\theta }\left[ 1-e^{- \beta (x+1)}\right] }\)

DEE

Weibull

\(e^{-\alpha x^{\theta } \left[ 1-e^{- \left( \frac{x}{\beta }\right) ^{\eta }}\right] } - e^{-\alpha (x+1)^{\theta }\left[ 1-e^{- \left( \frac{x+1}{\beta }\right) ^{\eta }}\right] }\)

DEW

Fréchet

\(e^{-\alpha x^{\theta } \left[ e^{- \left( \frac{x}{\beta }\right) ^{-\eta }}\right] } - e^{-\alpha (x+1)^{\theta }\left[ e^{- \left( \frac{x+1}{\beta }\right) ^{-\eta }}\right] }\)

DEFr

Gamma

\(e^{-\alpha x^{\theta } \left[ \frac{\Gamma {(\eta ,\beta x)}}{\Gamma {(\eta )}}\right] } - e^{-\alpha (x+1)^{\theta }\left[ \frac{\Gamma {(\eta ,\beta (x+1))}}{\Gamma {(\eta )}}\right] }\)

DEG

Lomax

\(e^{-\alpha x^{\theta } \left[ 1-\left( 1+ \beta x\right) ^{-\eta }\right] } - e^{-\alpha (x+1)^{\theta }\left[ 1-(1+ \beta (x+1))^{-\eta }\right] }\)

DEL

Burr

\(e^{-\alpha x^{\theta } \left[ 1-\left( 1+ x^{\beta }\right) ^{-\eta }\right] } - e^{-\alpha (x+1)^{\theta }\left[ 1-(1+ (x+1)^{\beta })^{-\eta }\right] }\)

DEB