Table 1 Predictive accuracy of models employing the combined CNN-MLP algorithm and CNN-only algorithm.
Algorithm | Input | Performance metrics | |||
---|---|---|---|---|---|
MAE (years) | RMSE (years) | R2 | |||
10-fold cross validation (Training set, n = 2,703) | Combined CNN-MLP | Minimally preprocessed whole brain T1-weighted image + sex information | 3.494 ± 0.228 | 4.689 ± 0.570 | 0.933 ± 0.012 |
CNN-only | Minimally preprocessed whole brain T1-weighted image | 3.563 ± 0.193 | 4.839 ± 0.299 | 0.932 ± 0.009 | |
Internal validation (Test set, n = 301) | Combined CNN-MLP | Minimally preprocessed whole brain T1-weighted image + sex information | 3.184 | 4.687 | 0.936 |
CNN-only | Minimally preprocessed whole brain T1-weighted image | 3.342 | 4.659 | 0.937 | |
External validation (CamCAN set, n = 645) | Combined CNN-MLP | Minimally preprocessed whole brain T1-weighted image + sex information | 4.910 | 6.148 | 0.891 |
CNN-only | Minimally preprocessed whole brain T1-weighted image | 5.064 | 6.295 | 0.885 |