Table 1 Distribution of outcome classes according to the tilt status in the development and test datasets.

From: Deep learning-based optic disc classification is affected by optic-disc tilt

Development dataset

All

(n = 2005, k = 1555)

Non-tilted disc

(n = 1198, k = 992)

Tilted disc

(n = 807, k = 640)

Class, n (%)

Normal

1336 (66.6)

749 (62.5)

587 (72.7)

Glaucoma

382 (19.1)

230 (19.2)

152 (18.8)

Optic disc pallor

196 (9.8)

141 (11.8)

55 (6.8)

Optic disc swelling

91 (4.5)

78 (6.5)

13 (1.6)

Test dataset

All

(n = 502, k = 464)

Non-tilted disc

(n = 299, k = 282)

Tilted disc

(n = 203, k = 189)

Class, n (%)

Normal

335 (66.7)

179 (59.9)

156 (76.8)

Glaucoma

95 (18.9)

63 (21.1)

32 (15.8)

Optic disc pallor

49 (9.8)

38 (12.7)

11 (5.4)

Optic disc swelling

23 (4.6)

19 (6.4)

4 (2.0)

  1. This table presents the number (percent) of images annotated with each outcome class in each dataset category, illustrating the allocation of data for model training and evaluation. n = numbers of images. k = numbers of patients. Note that, some of the collected images belong to the same individual patients.