Table 1 Parameters of the proposed model used in the experiments.

From: Enhancing heart disease prediction using a self-attention-based transformer model

Parameter

Description

Model

Self-attention-based transformer model

Input dimension \(=14\)

Input features dimension

Output dimension \(=\mathrm{2,4}\)

Number of output classes

d-model = 128

Dimensionality of the model's hidden states

nhead \(=4\)

Attention heads in the multi-head self-attention

Num-layers \(=4\)

Layers in the encoder

Dropout \(=0.2\)

Dropout probability

Batch-size \(=\mathrm{32,64}\)

Number of samples

Epochs \(=90\)

number of iterations

Learning-rate \(=0.001\)

Learning rate

Optimizer \(=\) Adam

optimizer used for updating the parameters

Train-loss

Avg raining loss over the training dataset

Cross entropy

Loss function

Test-loss

Avg loss over the testing dataset