Table 1 Comparison of various predictors based on accuracy and F1-score fitness function with feature selection in training set.

From: Development of machine learning-based predictors for early diagnosis of hepatocellular carcinoma

Predictors

NO.Opt

NO.HCC

NO.CwoHCC

ACC

F1-score

AUC

95% CI

mRMR + KNN

11

988/988

332/332

1

1

1

1–1

mRMR + SVM

11

988/988

332/332

1

1

1

1–1

mRMR + LR

15

988/988

332/332

1

1

1

1–1

mRMR + XGBoost

26

988/988

332/332

1

1

1

1–1

mRMR + LMT

26

988/988

332/332

1

1

1

1–1

mRMR + AdaboostM1

60

987/988

330/332

0.9977

0.9985

0.9965

0.9922–1

mRMR + J48

66

987/988

329/332

0.997

0.998

0.995

0.9898–1

mRMR + NB

24

980/988

330/332

0.9924

0.9949

0.9929

0.9879–0.998

MRMD + KNN

28

988/988

332/332

1

1

1

1–1

MRMD + SVM

28

988/988

332/332

1

1

1

1–1

MRMD + LR

30

988/988

332/332

1

1

1

1–1

MRMD + LMT

74

988/988

332/332

1

1

1

1–1

MRMD + J48

59

987/988

329/332

0.997

0.998

0.995

0.9898–1

MRMD + AdaboostM1

160

985/988

330/332

0.9962

0.9975

0.9955

0.991–1

MRMD + XGBoost

96

982/988

326/332

0.9909

0.9939

0.9879

0.9804–0.9955

MRMD + NB

28

963/988

328/332

0.978

0.9852

0.9813

0.9737–0.989

  1. NO.Opt number of optimal signature, NO.HCC number of HCC samples, NO.CwoHCC number of CwoHCC samples, ACC accuracy.