Table 3 The F1-score for different architectures depending on loss functions (Day 3).

From: Wildfire spreading prediction using multimodal data and deep neural network approach

 

U-Net

U-Net++

MA-Net

DeepLabV3

BCE loss

\(0.63 \pm 0.007\)

\(0.63 \pm 0.004\)

\(0.63 \pm 0.006\)

\(0.64 \pm 0.005\)

Dice loss

\(0.65 \pm 0.005\)

\(0.66 \pm 0.007\)

\(0.65 \pm 0.007\)

\(0.66 \pm 0.006\)

Focal loss

\(0.62 \pm 0.006\)

\(0.64 \pm 0.004\)

\(0.63 \pm 0.004\)

\(0.63 \pm 0.006\)

Dice + focal loss

\(0.66 \pm 0.004\)

\(0.65 \pm 0.004\)

\(0.67 \pm 0.003\)

\(0.65 \pm 0.005\)

General dice loss

\(0.65 \pm 0.007\)

\(0.66 \pm 0.005\)

\(0.66 \pm 0.005\)

\(0.66 \pm 0.004\)

Tversky

\(0.65 \pm 0.005\)

\(0.66 \pm 0.006\)

\(0.66 \pm 0.006\)

\(0.66 \pm 0.005\)