Table 3 Comparison of MSE and MAE prediction performance of different methods on Milano dataset.

From: Core network traffic prediction based on vertical federated learning and split learning

 

Milano

Methods

MSE

MAE

 

SMS

Call

Internet

SMS

Call

Internet

SVR

0.5294

0.1211

0.1252

0.3981

0.2134

0.3120

Lasso

0.8411

0.3215

0.4621

0.7214

0.5162

0.6122

LSTM

0.5922

0.1545

0.1874

0.4721

0.3134

0.3122

Fedavg

0.4853

0.1466

0.1168

0.4176

0.2045

0.3109

VFL

\(\mathbf {0.3479}\)

\(\mathbf {0.1023}\)

\(\mathbf {0.1132}\)

\(\mathbf {0.3742}\)

\(\mathbf {0.2001}\)

\(\mathbf {0.2976}\)

  1. The optimal values are in bold.