Table 4 Grade table of the score function.

From: A novel approach towards web browser using the concept of a complex spherical fuzzy soft information

\({\raisebox{-4.5pt}{{\rm R}}\rotatebox{45}{\hspace*{-11pt}--}}\)

(\({s}_{1}\),\({s}_{1})\)

(\({s}_{1}\),\({s}_{2})\)

(\({s}_{1}\),\({s}_{3})\)

(\({s}_{1}\),\({s}_{4})\)

(\({s}_{1}\),\({s}_{5})\)

(\({s}_{2}\),\({s}_{1})\)

(\({s}_{2}\),\({s}_{2})\)

(\({s}_{2}\),\({s}_{3})\)

(\({s}_{2}\),\({s}_{4})\)

\({\check{\mathrm{u}}}_{i}\)

\({\check{\mathrm{u}}}_{2}\)

\({\check{\mathrm{u}}}_{2}\)

\({\check{\mathrm{u}}}_{2}\)

\({\check{\mathrm{u}}}_{2}\)

\({\check{\mathrm{u}}}_{1}\)

\({\check{\mathrm{u}}}_{2}\)

\({\check{\mathrm{u}}}_{3}\)

\({\check{\mathrm{u}}}_{2}\)

\({\check{\mathrm{u}}}_{2}\)

Highest degree

×

0.23858

0.31192

0.31192

0.27288

0.23858

×

0.23020

0.23020

\(\lambda \)

×

0.18808

0.17938

0.20808

0.20808

0.18808

×

0.21216

0.21130

\({\raisebox{-4.5pt}{{\rm R}}\rotatebox{45}{\hspace*{-11pt}--}}\)

(\({s}_{2}\),\({s}_{5})\)

(\({s}_{3}\),\({s}_{1})\)

(\({s}_{3}\),\({s}_{2})\)

(\({s}_{3}\),\({s}_{3})\)

(\({s}_{3}\),\({s}_{4})\)

(\({s}_{3}\),\({s}_{5})\)

(\({s}_{4}\),\({s}_{1})\)

(\({s}_{4}\),\({s}_{2})\)

(\({s}_{4}\),\({s}_{3})\)

\({\check{\mathrm{u}}}_{i}\)

\({\check{\mathrm{u}}}_{2}\)

\({\check{\mathrm{u}}}_{2}\)

\({\check{\mathrm{u}}}_{2}\)

\({\check{\mathrm{u}}}_{1}\)

\({\check{\mathrm{u}}}_{2}\)

\({\check{\mathrm{u}}}_{1}\)

\({\check{\mathrm{u}}}_{2}\)

\({\check{\mathrm{u}}}_{2}\)

\({\check{\mathrm{u}}}_{2}\)

Highest degree

0.21420

0.31192

0.23020

×

0.31192

0.34506

0.31192

0.23020

0.31120

\(\lambda \)

0.23450

0.17938

0.21216

×

0.20666

0.20666

0.20808

0.21130

0.20666

\({\raisebox{-4.5pt}{{\rm R}}\rotatebox{45}{\hspace*{-11pt}--}}\)

(\({s}_{4}\),\({s}_{4})\)

(\({s}_{4}\),\({s}_{5})\)

(\({s}_{5}\),\({s}_{1})\)

(\({s}_{5}\),\({s}_{2})\)

(\({s}_{5}\),\({s}_{3})\)

(\({s}_{5}\),\({s}_{4})\)

(\({s}_{5}\),\({s}_{5})\)

  

\({\check{\mathrm{u}}}_{i}\)

\({\check{\mathrm{u}}}_{1}\)

\({\check{\mathrm{u}}}_{1}\)

\({\check{\mathrm{u}}}_{1}\)

\({\check{\mathrm{u}}}_{2}\)

\({\check{\mathrm{u}}}_{1}\)

\({\check{\mathrm{u}}}_{1}\)

\({\check{\mathrm{u}}}_{4}\)

  

Highest degree

×

0.27288

0.27288

0.21420

0.34506

0.27288

×

  

\(\lambda \)

×

0.20580

0.20808

0.23450

0.20666

0.20580

×

  
  1. \({S({{\check{\mathrm{u}}}}}_{1})=\left(0.27288\times 0.20808\right)+\left(0.34506\times 0.20666\right)+\left(0.27288\times 0.20580\right)+\left(0.27288\times 0.20808\right)+\left(0.34506\times 0.20666\right)+\left(0.27288\times 0.20580\right)=0.36974,\) \({S({{\check{\mathrm{u}}}}}_{2})=(0.23858\times 0.18808)+(0.31192\times 0.17938)+(0.31192\times 0.20808)+(0.23858\times 0.18808)+ (0.23020\times 0.21216)+(0.23020\times 0.21130)+(0.21420\times 0.23450)+(0.31192\times 0.17938)+(0.23020\times 0.21216)+(0.31192\times 0.20666)+(0.31192\times 0.20808)+(0.23020\times 0.21130)+(0.31120\times 0.20666)+(0.21420\times 0.23450)=0.75565.\)