Table 1 Comparing of numerical solutions/REFs using QLM-FSVLFs technique for \(\gamma =2,\sigma =1\), \(\lambda ,m=1\), \(K=6,10\), and various \(r\in [0,1]\).

From: Computational analysis of a class of singular nonlinear fractional multi-order heat conduction model of the human head

r

QLM-FSVLFs

PLSM21

\(h^{(6)}_{6,1}(r)\)

\({\mathbb {R}}_{6,1}^{(6)}(r)\)

\(h^{(6)}_{10,1}(r)\)

\({\mathbb {R}}_{10,1}^{(6)}(r)\)

Six-degree poly.

Error

0.0

1.16081984

\(0.0000_{-0}\)

1.160819819590251

\(0.0000_{-0}\)

1.16081983

\(0.000_{-0}\)

0.1

1.16029771

\(8.4065_{-7}\)

1.160297689006561

\(2.0152_{-11}\)

1.16029769

\(6.725_{-8}\)

0.2

1.15873032

\(6.1609_{-7}\)

1.158730315153458

\(2.6535_{-13}\)

1.15873032

\(1.978_{-8}\)

0.3

1.15611475

\(2.2439_{-7}\)

1.156114745851976

\(1.3948_{-13}\)

1.15611475

\(4.388_{-8}\)

0.4

1.15244604

\(2.7801_{-9}\)

1.152446041158113

\(2.2824_{-13}\)

1.15244604

\(5.158_{-9}\)

0.5

1.14771725

\(3.4620_{-8}\)

1.147717243637097

\(1.8269_{-13}\)

1.14771725

\(2.308_{-8}\)

0.6

1.14191934

\(8.4479_{-10}\)

1.141919336227521

\(9.1822_{-14}\)

1.14191934

\(2.141_{-9}\)

0.7

1.13504119

\(1.4206_{-8}\)

1.135041187162281

\(1.9870_{-14}\)

1.13504119

\(4.642_{-8}\)

0.8

1.12706948

\(4.4394_{-9}\)

1.127069481241230

\(8.9165_{-15}\)

1.12706949

\(2.416_{-8}\)

0.9

1.11798864

\(3.4191_{-9}\)

1.117988636563056

\(7.0406_{-15}\)

1.11798864

\(8.311_{-8}\)

1.0

1.10778071

\(6.4787_{-9}\)

1.107780705616379

\(4.3711_{-14}\)

1.10778071

\(4.629_{-9}\)