Table 3 The results of \(\mathcal {E}_{\infty }\) error norms, the CPU time, and the corresponding \(\text{ ord}_R^{\infty }\) for \(\lambda =1\), \(m=0.5,1,2\), \(\gamma =2,\sigma =1\), and different K.

From: Computational analysis of a class of singular nonlinear fractional multi-order heat conduction model of the human head

K

\(m=1\)

\(m=0.5\)

\(m=2\)

\(\mathcal {E}_{\infty }\)

\(\text{ ord}_K^{\infty }\)

CPU(s)

\(\mathcal {E}_{\infty }\)

\(\text{ ord}_K^{\infty }\)

\(\mathcal {E}_{\infty }\)

\(\text{ ord}_K^{\infty }\)

2

\(6.0552\times 10^{-3}\)

0.37765

\(8.5582\times 10^{-3}\)

\(1.7392\times 10^{-3}\)

4

\(8.8287\times 10^{-5}\)

6.0998

0.45875

\(1.0514\times 10^{-4}\)

6.3469

\(1.9290\times 10^{-5}\)

6.4945

8

\(5.8803\times 10^{-9}\)

13.874

0.63598

\(4.9241\times 10^{-9}\)

14.382

\(7.3248\times 10^{-10}\)

14.685

16

\(1.9231\times 10^{-15}\)

21.544

1.06565

\(3.2476\times 10^{-15}\)

20.532

\(7.3347\times 10^{-16}\)

19.930