Table 4 The results of \(\mathcal {E}_{\infty }\) error norms and the corresponding \(\text{ ord}_R^{\infty }\) for \(m,\lambda ,Bi=1\), \(A=2\), \(\gamma =2,\sigma =1\), and different K.

From: Computational analysis of a class of singular nonlinear fractional multi-order heat conduction model of the human head

K

\(\lambda =5\)

\(Bi=5\)

\(A=0.25\)

\(\mathcal {E}_{\infty }\)

\(\text{ ord}_K^{\infty }\)

\(\mathcal {E}_{\infty }\)

\(\text{ ord}_K^{\infty }\)

\(\mathcal {E}_{\infty }\)

\(\text{ ord}_K^{\infty }\)

2

\(7.8704\times 10^{-2}\)

\(7.1703\times 10^{-3}\)

\(1.1076\times 10^{-2}\)

4

\(4.0836\times 10^{-3}\)

4.2685

\(1.1312\times 10^{-4}\)

5.9861

\(2.8244\times 10^{-4}\)

5.2933

8

\(3.8235\times 10^{-6}\)

10.061

\(8.9189\times 10^{-9}\)

13.631

\(5.4736\times 10^{-8}\)

12.333

16

\(3.9429\times 10^{-13}\)

23.209

\(2.0829\times 10^{-15}\)

22.030

\(1.9878\times 10^{-16}\)

28.037