Table 6 The results of \(\mathcal {E}_{\infty }\) error norms and the corresponding \(\text{ ord}_R^{\infty }\) for \(m,\lambda ,Bi=1\), \(A=2\), \(\alpha =\gamma\), and three different \((\gamma ,\sigma )\).

From: Computational analysis of a class of singular nonlinear fractional multi-order heat conduction model of the human head

K

\((\gamma ,\sigma )=(1.5,0.5)\)

\((\gamma ,\sigma )=(1.7,0.7)\)

\((\gamma ,\sigma )=(1.9,0.9)\)

\(\mathcal {E}_{\infty }\)

\(\text{ ord}_K^{\infty }\)

\(\mathcal {E}_{\infty }\)

\(\text{ ord}_K^{\infty }\)

\(\mathcal {E}_{\infty }\)

\(\text{ ord}_K^{\infty }\)

1

\(3.6788\times 10^{-1}\)

\(3.6788\times 10^{-1}\)

\(3.6788\times 10^{-1}\)

2

\(7.8809\times 10^{-3}\)

5.5447

\(7.3924\times 10^{-3}\)

5.6371

\(6.7762\times 10^{-3}\)

5.7626

4

\(1.2137\times 10^{-5}\)

9.3428

\(7.3823\times 10^{-6}\)

9.9677

\(4.2754\times 10^{-6}\)

10.630

8

\(1.2088\times 10^{-11}\)

19.938

\(2.4847\times 10^{-12}\)

21.503

\(4.6821\times 10^{-13}\)

23.122