Table 1 Specific parameter settings for the algorithms used in this study.

From: Efficient implicit constraint handling approaches for constrained optimization problems

Algorithm

Parameter settings

Evolutionary strategy

Number of offspring = 200, rule = 1.0/7.0

Differential evolution

Variant = "DE/rand/1/bin", crossover constant (CR) = 0.3, Weighting factor (F) = 0.8

Stochastic ranking evolutionary strategy

Number of offspring = 200, rule = 1.0/7.0, gamma = 0.85, alpha = 0.2

Biased random key genetic algorithm

Number of elite = 200, number of offspring = 700, number of mutant = 100, bias = 0.7