Table 2 A comparison of universality class of critical exponents between the short-range, extended-range and long-range models.
From: Critical scaling of a two-orbital topological model with extended neighboring couplings
Model | \(\hspace{0.2cm}k_0\hspace{0.2cm}\) | \(\hspace{0.2cm}z\hspace{0.2cm}\) | \(\hspace{0.2cm}\nu \hspace{0.2cm}\) | \(\hspace{0.2cm}\gamma \hspace{0.2cm}\) | \(\hspace{0.2cm} y\hspace{0.2cm}\) | \(2-\alpha ^*\) |
---|---|---|---|---|---|---|
Short-range | 0 | 1 | 1 | 1 | 1 | 2 |
\(\pi\) | 1 | 1 | 1 | 1 | 2 | |
Extended-range (multi-criticality) | 0 | 1 | 1 | 1 | 1 | 2 |
\(\pi\) | 2 | 1/2 | 1 | 1 | 3/2 | |
Extended-range (normal criticality) | 0 | 1 | 1 | 1 | 1 | 2 |
\(\pi\) | 1 | 1 | 1 | 1 | 2 | |
Long-range | Â | Â | Â | Â | Â | Â |
\(\alpha <1\) | 0 | D | IL | IL | IL | IL |
\(1<\alpha <2\) |  | \(z<1\) | – | – | 1 | H |
\(\alpha >2\) | Â | 1 | 1 | 1 | 1 | 2 |
\(\forall\) \(\alpha\) | \(\pi\) | 1 | 1 | 1 | 1 | 2 |