Table 3 Predictive results of six deep learning models.
From: An adaptive adjacency matrix-based graph convolutional recurrent network for air quality prediction
 | PM2.5 | PM10 | O3 | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | |
Fangshan monitoring station | |||||||||
 LSTM | 20.9 | 14.62 | 0.81 | 24.16 | 18.13 | 0.70 | 15.71 | 12.33 | 0.4 |
 Seq2Seq | 21.03 | 14.71 | 0.81 | 26.44 | 20.11 | 0.64 | 14.81 | 11.18 | 0.47 |
 CNN-LSTM | 25.74 | 18.4 | 0.72 | 29.44 | 23.00 | 0.55 | 17.06 | 13.43 | 0.3 |
 GC-LSTM | 22.06 | 15.95 | 0.79 | 24.56 | 18.97 | 0.69 | 17.82 | 14.48 | 0.33 |
 SpAttRNN | 22.62 | 15.58 | 0.78 | 24.41 | 19.24 | 0.69 | 16.4 | 12.48 | 0.43 |
 AAMGCRN | 19.11 | 13.58 | 0.84 | 23.73 | 18.07 | 0.71 | 14.74 | 11.07 | 0.54 |
Tiantan monitoring station | |||||||||
 LSTM | 20.64 | 13.46 | 0.81 | 23.87 | 17.58 | 0.66 | 16.91 | 12.92 | 0.35 |
 Seq2Seq | 21.49 | 13.35 | 0.79 | 22.35 | 16.52 | 0.71 | 15.67 | 11.71 | 0.44 |
 CNN-LSTM | 24.21 | 17.80 | 0.74 | 24.18 | 18.63 | 0.66 | 16.03 | 12.71 | 0.41 |
 GC- LSTM | 20.53 | 14.00 | 0.81 | 18.90 | 13.93 | 0.71 | 17.01 | 12.65 | 0.46 |
 SpAttRNN | 20.77 | 14.13 | 0.81 | 19.37 | 14.66 | 0.69 | 17.14 | 12.68 | 0.46 |
 AAMGCRN | 19.10 | 12.67 | 0.84 | 18.80 | 13.87 | 0.71 | 15.44 | 11.47 | 0.56 |
Dongsi monitoring station | |||||||||
 LSTM | 21.88 | 14.03 | 0.81 | 20.59 | 15.11 | 0.78 | 17.67 | 12.80 | 0.27 |
 Seq2Seq | 21.27 | 13.94 | 0.82 | 21.5 | 15.96 | 0.76 | 16.77 | 12.49 | 0.34 |
 CNN-LSTM | 24.46 | 17.38 | 0.77 | 24.65 | 19.11 | 0.69 | 20.83 | 18.57 | -0.01 |
 GC-LSTM | 20.61 | 14.04 | 0.83 | 19.25 | 14.39 | 0.77 | 16.64 | 14.45 | 0.44 |
 SpAttRNN | 20.19 | 13.40 | 0.84 | 18.45 | 13.77 | 0.79 | 16.93 | 13.27 | 0.42 |
 AAMGCRN | 18.21 | 12.04 | 0.87 | 17.75 | 13.02 | 0.80 | 14.39 | 11.05 | 0.58 |