Table 3 Predictive results of six deep learning models.

From: An adaptive adjacency matrix-based graph convolutional recurrent network for air quality prediction

 

PM2.5

PM10

O3

RMSE

MAE

R2

RMSE

MAE

R2

RMSE

MAE

R2

Fangshan monitoring station

 LSTM

20.9

14.62

0.81

24.16

18.13

0.70

15.71

12.33

0.4

 Seq2Seq

21.03

14.71

0.81

26.44

20.11

0.64

14.81

11.18

0.47

 CNN-LSTM

25.74

18.4

0.72

29.44

23.00

0.55

17.06

13.43

0.3

 GC-LSTM

22.06

15.95

0.79

24.56

18.97

0.69

17.82

14.48

0.33

 SpAttRNN

22.62

15.58

0.78

24.41

19.24

0.69

16.4

12.48

0.43

 AAMGCRN

19.11

13.58

0.84

23.73

18.07

0.71

14.74

11.07

0.54

Tiantan monitoring station

 LSTM

20.64

13.46

0.81

23.87

17.58

0.66

16.91

12.92

0.35

 Seq2Seq

21.49

13.35

0.79

22.35

16.52

0.71

15.67

11.71

0.44

 CNN-LSTM

24.21

17.80

0.74

24.18

18.63

0.66

16.03

12.71

0.41

 GC- LSTM

20.53

14.00

0.81

18.90

13.93

0.71

17.01

12.65

0.46

 SpAttRNN

20.77

14.13

0.81

19.37

14.66

0.69

17.14

12.68

0.46

 AAMGCRN

19.10

12.67

0.84

18.80

13.87

0.71

15.44

11.47

0.56

Dongsi monitoring station

 LSTM

21.88

14.03

0.81

20.59

15.11

0.78

17.67

12.80

0.27

 Seq2Seq

21.27

13.94

0.82

21.5

15.96

0.76

16.77

12.49

0.34

 CNN-LSTM

24.46

17.38

0.77

24.65

19.11

0.69

20.83

18.57

-0.01

 GC-LSTM

20.61

14.04

0.83

19.25

14.39

0.77

16.64

14.45

0.44

 SpAttRNN

20.19

13.40

0.84

18.45

13.77

0.79

16.93

13.27

0.42

 AAMGCRN

18.21

12.04

0.87

17.75

13.02

0.80

14.39

11.05

0.58