Table 2 Predictive performance for HER2 state of single data source models based on a variety of classifiers, in the training, the validation, and the test set.

From: Intra- and peritumoral radiomics features based on multicenter automatic breast volume scanner for noninvasive and preoperative prediction of HER2 status in breast cancer: a model ensemble research

Single data source models

Classifiers

Data sets

AUC (95% CI)

Cutoff

Sensitivity

Specificity

Tumor

RFC

Training

0.973 (0.954, 0.922)

0.4966

1.000

0.832

Validation

0.598 (0.393, 0.804)

0.4258

0.545

0.250

Test

0.559 (0.443, 0.675)

0.3001

0.694

0.548

ETC

Training

0.977 (0.973, 0.985)

0.4755

1.000

0.957

Validation

0.555 (0.371, 0.739)

0.4055

1.000

0.292

Test

0.516 (0.392.0.640)

0.3497

1.000

0.016

ABC

Training

1.000 (1.000, 1.000)

0.5024

1.000

0.000

Validation

0.549 (0.336, 0.763)

0.4841

0.636

0.625

Test

0.531 (0.410, 0.652)

0.4265

0.944

0.177

Clinical

ETC

Training

1.000 (1.000, 1.000)

0.5996

1.000

0.000

Validation

0.803 (0.660, 0.947)

0.3358

1.000

0.625

Test

0.695 (0.583, 0.807)

0.2803

0.861

0.419

RFC

Training

1.000 (1.000, 1.000)

0.5706

1.000

0.000

Validation

0.754 (0.595, 0.913)

0.4457

0.909

0.667

Test

0.705 (0.601, 0.809)

0.3522

0.889

0.468

LGBM

Training

1.000 (1.000, 1.000)

0.5302

1.000

0.000

Validation

0.667 (0.479, 0.855)

0.0608

0.909

0.417

Test

0.722 (0.613, 0.831)

0.0373

0.972

0.258

R5mm

GBC

Training

1.000 (1.000, 1.000)

0.5003

1.000

0.000

Validation

0.625 (0.430, 0.820)

0.0058

1.000

0.250

Test

0.465 (0.346, 0.585)

0.000

1.000

0.000

ETC

Training

1.000 (1.000, 1.000)

0.5667

1.000

0.000

Validation

0.625 (0.409, 0.841)

0.1939

1.000

0.125

Test

0.472 (0.352, 0.593)

0.0582

1.000

0.032

ABC

Training

1.000 (1.000, 1.000)

0.5046

1.000

0.000

Validation

0.606 (0.372, 0.840)

0.4815

0.727

0.500

Test

0.472 (0.349, 0.596)

0.3547

1.000

0.016

R3mm

LGBM

Training

1.000 (1.000, 1.000)

0.5293

1.000

0.000

Validation

0.619 (0.393, 0.845)

0.4159

0.545

0.833

Test

0.487 (0.368, 0.606)

0.000

1.000

0.000

RFC

Training

1.000 (1.000, 1.000)

0.5064

1.000

0.000

Validation

0.614 (0.414, 0.813)

0.3730

1.000

0.292

Test

0.494 (0.374, 0.614)

0.1290

1.000

0.048

ABC

Training

0.998 (0.996, 1.000)

0.4945

1.000

0.968

Validation

0.606 (0.422, 0.790)

0.4707

1.000

0.250

Test

0.483 (0.368, 0.599)

0.4088

1.000

0.032

  1. Bold characters represented the classifier with the highest sum of AUCs in the validation set and the test set.
  2. R3mm, model based on peritumoral 3 mm ring of breast tumor; R5mm, model based on peritumoral 5 mm ring of breast tumor; Tumor, model based on radiomics features of the tumor; ABC, Ada Boosting Classifier; AUC, the area under the curve; CI, confidence interval; Clinical, model based on clinical, ABVS, and serology features of breast tumor; ETC, Extra Tree Classifier; GBC, Gradient Boosting Classifier; LGBM, Light Gradient Boosting Machine; RFC, Random Forest Classifier.