Table 5 Metrics of the best performing ML models in feature selection.

From: Machine learning prediction of Gleason grade group upgrade between in-bore biopsy and radical prostatectomy pathology

 

AUC

Accuracy

Sensitivity

Specificity

Youden index

(a) All patients

 Linear SVM

\(0.859\pm 0.005\)

\(0.800\pm 0.005\)

\(0.416\pm 0.013\)

\(\mathbf{0.958}\pm \mathbf{0.006}\)

\(0.374\pm 0.013\)

 RBF SVM

\( \mathbf{0.865}\pm \mathbf{0.007}\)

\( \mathbf{0.856}\pm \mathbf{0.004}\)

\( \mathbf{0.621}\pm \mathbf{0.013}\)

\(0.953\pm 0.003\)

\( \mathbf{0.575}\pm \mathbf{0.013}\)

 LASSO

\(0.859\pm 0.005 \)

\(0.802\pm 0.004\)

\(0.452\pm 0.014\)

\(0.946\pm 0.006\)

\(0.399\pm 0.012\)

 Ridge

\(0.858\pm 0.005\)

\(0.796\pm 0.005\)

\(0.449\pm 0.014\)

\(0.939\pm 0.007\)

\(0.388\pm 0.012\)

(b) Biopsy GG > 1 patients only

 Linear SVM

\( \mathbf{0.944}\pm \mathbf{0.004}\)

\(0.901\pm 0.005\)

\(0.637\pm 0.023\)

\(0.936\pm 0.004\)

\(0.573\pm 0.024\)

 RBF SVM

\(0.894\pm 0.007\)

\(0.878\pm 0.004\)

\(0.445\pm 0.024\)

\(0.936\pm 0.004\)

\(0.381\pm 0.023\)

 LASSO

\(0.930\pm 0.005\)

\(0.895\pm 0.005\)

\(0.613\pm 0.024\)

\(0.933\pm 0.005\)

\(0.545\pm 0.023\)

 Ridge

\(\mathbf{0.944}\pm \mathbf{0.005}\)

\( \mathbf{0.904}\pm \mathbf{0.005}\)

\( \mathbf{0.652}\pm \mathbf{0.023}\)

\( \mathbf{0.938}\pm \mathbf{0.004}\)

\( \mathbf{0.590}\pm \mathbf{0.024}\)

  1. The mean scores and their standard deviations of randomly selected 100 train-test splits of (a) all patients and (b) biopsy \(\hbox {GG}>1\) patients only.
  2. Significant values are in bold.