Table 1 Accuracy per layer and statistical features of their filters for VGG-16 trained on CIFAR-100.
From: Towards a universal mechanism for successful deep learning
VGG-16 on CIFAR-100 | |||||||
---|---|---|---|---|---|---|---|
Layer | \({N}_{f}\) | \({F}_{s}\) | \(F{C}_{s}\) | Accuracy | \(n\) | \({N}_{c}\) | \({C}_{s}\) |
13 | 512 | 1 × 1 | 512 | 0.745 | 277.1 | 1.7 | 7.7 |
10 | 512 | 2 × 2 | 2048 | 0.752 | 16.3 | 2.6 | 2.0 |
7 | 256 | 4 × 4 | 4096 | 0.577 | 117.9 | 2.8 | 2.7 |
4 | 128 | 8 × 8 | 8192 | 0.439 | 552.4 | 5.1 | 2.8 |
2 | 64 | 16 × 16 | 16,384 | 0.352 | 987.8 | 5.8 | 3.2 |