Table 4 Accuracy per layer and statistical features of their filters for VGG-16 trained on \(K\) labels from CIFAR-100.
From: Towards a universal mechanism for successful deep learning
Layer | \({N}_{f}\) | \({F}_{s}\) | \(F{C}_{s}\) | Accuracy | \(n\) | \({N}_{c}\) | \({C}_{s}\) |
---|---|---|---|---|---|---|---|
VGG-16 on CIFAR-10/100 | |||||||
 13 | 512 | 1 × 1 | 512 | 0.926 | 3.26 | 1.01 | 2.2 |
 10 | 512 | 2 × 2 | 2048 | 0.931 | 4.86 | 1.83 | 1.6 |
 7 | 256 | 4 × 4 | 4096 | 0.908 | 10.11 | 1.47 | 1.7 |
 4 | 128 | 8 × 8 | 8192 | 0.890 | 15.83 | 1.6 | 1.8 |
 2 | 64 | 16 × 16 | 16,384 | 0.829 | 18.64 | 1.6 | 2.0 |
VGG-16 on CIFAR-20/100 | |||||||
 13 | 512 | 1 × 1 | 512 | 0.9115 | 9.92 | 1.02 | 3.7 |
 10 | 512 | 2 × 2 | 2048 | 0.9115 | 13.6 | 2.33 | 1.9 |
 7 | 256 | 4 × 4 | 4096 | 0.9065 | 33.6 | 1.64 | 2.31 |
 4 | 128 | 8 × 8 | 8192 | 0.8465 | 57 | 2 | 2.4 |
 2 | 64 | 16 × 16 | 16,384 | 0.752 | 68.23 | 1.83 | 2.7 |
VGG-16 on CIFAR-40/100 | |||||||
 13 | 512 | 1 × 1 | 512 | 0.8553 | 51.8 | 1.11 | 7.5 |
 10 | 512 | 2 × 2 | 2048 | 0.8567 | 12.3 | 2.92 | 2 |
 7 | 256 | 4 × 4 | 4096 | 0.7825 | 38.4 | 2.44 | 2.17 |
 4 | 128 | 8 × 8 | 8192 | 0.6388 | 143.8 | 3.22 | 2.54 |
 2 | 64 | 16 × 16 | 16,384 | 0.5380 | 203.6 | 3.5 | 2.7 |
VGG-16 on CIFAR-60/100 | |||||||
 13 | 512 | 1 × 1 | 512 | 0.8277 | 123.9 | 1.3 | 8.13 |
 10 | 512 | 2 × 2 | 2048 | 0.8275 | 18.17 | 2.78 | 2.3 |
 7 | 256 | 4 × 4 | 4096 | 0.7148 | 39.52 | 2.16 | 2.24 |
 4 | 128 | 8 × 8 | 8192 | 0.5392 | 260.6 | 4.16 | 2.6 |
 2 | 64 | 16 × 16 | 16,384 | 0.4480 | 423.92 | 4.5 | 3 |