Table 4 Accuracy per layer and statistical features of their filters for VGG-16 trained on \(K\) labels from CIFAR-100.

From: Towards a universal mechanism for successful deep learning

Layer

\({N}_{f}\)

\({F}_{s}\)

\(F{C}_{s}\)

Accuracy

\(n\)

\({N}_{c}\)

\({C}_{s}\)

VGG-16 on CIFAR-10/100

 13

512

1 × 1

512

0.926

3.26

1.01

2.2

 10

512

2 × 2

2048

0.931

4.86

1.83

1.6

 7

256

4 × 4

4096

0.908

10.11

1.47

1.7

 4

128

8 × 8

8192

0.890

15.83

1.6

1.8

 2

64

16 × 16

16,384

0.829

18.64

1.6

2.0

VGG-16 on CIFAR-20/100

 13

512

1 × 1

512

0.9115

9.92

1.02

3.7

 10

512

2 × 2

2048

0.9115

13.6

2.33

1.9

 7

256

4 × 4

4096

0.9065

33.6

1.64

2.31

 4

128

8 × 8

8192

0.8465

57

2

2.4

 2

64

16 × 16

16,384

0.752

68.23

1.83

2.7

VGG-16 on CIFAR-40/100

 13

512

1 × 1

512

0.8553

51.8

1.11

7.5

 10

512

2 × 2

2048

0.8567

12.3

2.92

2

 7

256

4 × 4

4096

0.7825

38.4

2.44

2.17

 4

128

8 × 8

8192

0.6388

143.8

3.22

2.54

 2

64

16 × 16

16,384

0.5380

203.6

3.5

2.7

VGG-16 on CIFAR-60/100

 13

512

1 × 1

512

0.8277

123.9

1.3

8.13

 10

512

2 × 2

2048

0.8275

18.17

2.78

2.3

 7

256

4 × 4

4096

0.7148

39.52

2.16

2.24

 4

128

8 × 8

8192

0.5392

260.6

4.16

2.6

 2

64

16 × 16

16,384

0.4480

423.92

4.5

3

  1. The results are similar to those of Table 1, where VGG-16 was trained on \(K=10, 20, 30,\) and \(60\) labels out of \(100,\) namely CIFAR-K/100 (Supplementary Information).