Table 6 Accuracy per label and statistical features of their filters for VGG-16 trained on \(K\) labels from CIFAR-10.

From: Towards a universal mechanism for successful deep learning

Layer

\({N}_{f}\)

\({F}_{s}\)

\(F{C}_{s}\)

Accuracy

\(n\)

\({N}_{c}\)

\({C}_{s}\)

VGG-16 on CIFAR-3/10

 13

512

1 × 1

512

0.988

0.07

1

1.02

 10

512

2 × 2

2048

0.988

0.27

1.5

1.02

 7

256

4 × 4

4096

0.989

0.67

1.2

1.06

 4

128

8 × 8

8192

0.972

1.70

1.1

1.12

 2

64

16 × 16

16,384

0.927

1.78

1.1

1.25

VGG-16 on CIFAR-6/10

 13

512

1 × 1

512

0.968

0.40

1

1.8

 10

512

2 × 2

2048

0.967

1.16

2.4

1.3

 7

256

4 × 4

4096

0.957

2.12

1.3

1.4

 4

128

8 × 8

8192

0.930

6.69

1.2

1.6

 2

64

16 × 16

16,384

0.860

7.59

1.1

1.7

VGG-16 on CIFAR-8/10

 13

512

1 × 1

512

0.961

0.63

1

2.2

 10

512

2 × 2

2048

0.958

2.17

2.8

1.4

 7

256

4 × 4

4096

0.954

4.07

1.2

1.6

 4

128

8 × 8

8192

0.890

12.4

1.4

1.8

 2

64

16 × 16

16,384

0.783

13.0

1.3

1.8

VGG-16 on CIFAR-10/10

 13

512

1 × 1

512

0.94

1.5

1

2.8

 10

512

2 × 2

2048

0.94

3.8

3.2

1.6

 7

256

4 × 4

4096

0.93

6.4

1.3

1.6

 4

128

8 × 8

8192

0.85

18.3

1.4

2.1

 2

64

16 × 16

16,384

0.72

19.6

1.3

2.1

  1. The results of VGG-16 trained on \(K=3, 6, 8,\) and \(10\) labels, namely CIFAR-K/10 (Supplementary Information).