Table 6 Accuracy per label and statistical features of their filters for VGG-16 trained on \(K\) labels from CIFAR-10.
From: Towards a universal mechanism for successful deep learning
Layer | \({N}_{f}\) | \({F}_{s}\) | \(F{C}_{s}\) | Accuracy | \(n\) | \({N}_{c}\) | \({C}_{s}\) |
---|---|---|---|---|---|---|---|
VGG-16 on CIFAR-3/10 | |||||||
 13 | 512 | 1 × 1 | 512 | 0.988 | 0.07 | 1 | 1.02 |
 10 | 512 | 2 × 2 | 2048 | 0.988 | 0.27 | 1.5 | 1.02 |
 7 | 256 | 4 × 4 | 4096 | 0.989 | 0.67 | 1.2 | 1.06 |
 4 | 128 | 8 × 8 | 8192 | 0.972 | 1.70 | 1.1 | 1.12 |
 2 | 64 | 16 × 16 | 16,384 | 0.927 | 1.78 | 1.1 | 1.25 |
VGG-16 on CIFAR-6/10 | |||||||
 13 | 512 | 1 × 1 | 512 | 0.968 | 0.40 | 1 | 1.8 |
 10 | 512 | 2 × 2 | 2048 | 0.967 | 1.16 | 2.4 | 1.3 |
 7 | 256 | 4 × 4 | 4096 | 0.957 | 2.12 | 1.3 | 1.4 |
 4 | 128 | 8 × 8 | 8192 | 0.930 | 6.69 | 1.2 | 1.6 |
 2 | 64 | 16 × 16 | 16,384 | 0.860 | 7.59 | 1.1 | 1.7 |
VGG-16 on CIFAR-8/10 | |||||||
 13 | 512 | 1 × 1 | 512 | 0.961 | 0.63 | 1 | 2.2 |
 10 | 512 | 2 × 2 | 2048 | 0.958 | 2.17 | 2.8 | 1.4 |
 7 | 256 | 4 × 4 | 4096 | 0.954 | 4.07 | 1.2 | 1.6 |
 4 | 128 | 8 × 8 | 8192 | 0.890 | 12.4 | 1.4 | 1.8 |
 2 | 64 | 16 × 16 | 16,384 | 0.783 | 13.0 | 1.3 | 1.8 |
VGG-16 on CIFAR-10/10 | |||||||
 13 | 512 | 1 × 1 | 512 | 0.94 | 1.5 | 1 | 2.8 |
 10 | 512 | 2 × 2 | 2048 | 0.94 | 3.8 | 3.2 | 1.6 |
 7 | 256 | 4 × 4 | 4096 | 0.93 | 6.4 | 1.3 | 1.6 |
 4 | 128 | 8 × 8 | 8192 | 0.85 | 18.3 | 1.4 | 2.1 |
 2 | 64 | 16 × 16 | 16,384 | 0.72 | 19.6 | 1.3 | 2.1 |