Table 2 Performance evaluation in binary stress detection.

From: Dynamic clustering via branched deep learning enhances personalization of stress prediction from mobile sensor data

Model

Precision

(@Recall\(\approx\)0.9)

PR AUC

ROC AUC

Location MLP11

GBDT43

LSTM18

Clustered CALM-Net

CALM-Net

Branched CALM-Net

0.588  ±  0.002

0.849  ±  0.026

0.780  ±  0.004

0.817  ±  0.003

0.843  ±  0.003

0.845  ±  0.005

0.674  ±  0.012

0.877  ±  0.031

0.805  ±  0.010

0.877  ±  0.002

0.933  ±  0.001

0.931  ±  0.001

0.580  ±  0.011

0.582  ±  0.064

0.530  ±  0.020

0.684  ±  0.003

0.807  ±  0.002

0.805  ±  0.004

Transformer (Trans)46,50

CATrans-Net

Branched CATrans-Net

0.780  ±  0.004

0.851  ±  0.006

0.851  ±  0.004

0.786  ±  0.008

0.932  ±  0.002

0.933  ±  0.001

0.501  ±  0.015

0.805  ±  0.003

0.805  ±  0.002

  1. The labels of median stress and very stressed are combined. We report the precision of different models for a recall of 0.9 and the Area Under the Curve (AUC) for the precision-recall curve and for the receiver operating characteristic (ROC). The PR and ROC curves are shown in Fig. 3.
  2. [bold] values indicate top performers in each category.