Table 5 An evaluation of the accuracy of y (t) using NDsolve and ANN-PSO-NNA for case 1, with \({\varvec{\sigma}}\) = 0.1, R = 0.2 and B = 0.3.

From: Neuro-computing solution for Lorenz differential equations through artificial neural networks integrated with PSO-NNA hybrid meta-heuristic algorithms: a comparative study

t

\({x(t)}_{Numerical}\)

\({\widehat{x}(t)}_{ANN}\)

\({AE(y(t))}_{ANN}\)

0

1

0.999997313

2.69E−06

0.1

0.904930603

0.904960789

3.02E−05

0.2

0.819077383

0.819086889

9.51E−06

0.3

0.741542942

0.741558898

1.60E−05

0.4

0.671516632

0.67155452

3.79E−05

0.5

0.608266533

0.608300919

3.44E−05

0.6

0.551132369

0.551137058

4.69E−06

0.7

0.499518461

0.499497847

2.06E−05

0.8

0.452887662

0.452874396

1.33E−05

0.9

0.410755511

0.410778667

2.32E−05

1

0.372685019

0.372719378

3.44E−05