Table 2 Comparison between LRPSM with \({\text{NTDM}}\) and HASTM for example 2.
From: Adapting Laplace residual power series approach to the Caudrey Dodd Gibbon equation
x | t | Exact Solution | Numerical results | |||
---|---|---|---|---|---|---|
Present Method (LRPSM) | ERROR-LRPSM | ERROR-HASTM36 | ERROR-\({\text{NTDM}}\)38 | |||
α = 1 | α = 1 | α = 1 | α = 1 | |||
0.5 | 0 | 0.6280127 | 0.628012 | 0 | 0 | 0 |
0.01 | 0.6388936 | 0.638893 | 2.26691e−06 | 3.51211e−05 | 6.63723e−06 | |
0.02 | 0.6496327 | 0.649632 | 1.81241e−05 | 2.81021e−04 | 7.7452e−05 | |
0.03 | 0.6602163 | 0.6602163 | 6.12895e−05 | 9.48603e−04 | 1.38205e−04 | |
0.04 | 0.6706305 | 0.6706305 | 1.45589e−04 | 2.24888e−03 | 1.17e−03 | |
0.05 | 0.6808615 | 0.6808615 | 2.84925e−04 | 4.39294e−03 | 1.8875e−03 | |
1 | 0 | 0.2615393 | 0.2615393 | 0 | 0 | 0 |
0.01 | 0.2712439 | 0.27124439 | 3.99819e−07 | 1.41429e−04 | 7.0112e−06 | |
0.02 | 0.2810871 | 0.28109041 | 3.23987e−06 | 2.24888e−03 | 2.78788e−05 | |
0.03 | 0.2910662 | 0.29107745 | 1.12342e−05 | 3.81193e−04 | 1.2331e−04 | |
0.04 | 0.3011780 | 0.30120548 | 2.74038e−05 | 9.02767e−04 | 1.1006e−03 | |
0.05 | 0.311419 | 0.31147452 | 5.50858e−05 | 1.76163e−03 | 1.0116e−03 |