Table 1 Comparison of model performance across WISDM datasets.
Method | Recall | Accuracy | Precision | F1-score |
---|---|---|---|---|
SVM60 | 0.9049 | 0.9471 | 0.9258 | 0.9121 |
HMM61 | 0.9056 | 0.9436 | 0.9299 | 0.9128 |
Genetic algorithm62 | 0.9553 | 0.9724 | 0.9580 | 0.9565 |
GRU | 0.9427 | 0.9676 | 0.9548 | 0.9484 |
GRU-attention63 | 0.9681 | 0.9790 | 0.9740 | 0.9710 |
CNN-GRU64 | 0.9377 | 0.9632 | 0.9457 | 0.9414 |
LSTM | 0.9370 | 0.9600 | 0.9382 | 0.9371 |
Attention-LSTM | 0.9398 | 0.9589 | 0.9442 | 0.9419 |
BiLSTM | 0.9593 | 0.9734 | 0.9623 | 0.9607 |
0.9557 | 0.9711 | 0.9598 | 0.9576 | |
CNN-BiLSTM67 | 0.9613 | 0.9740 | 0.9629 | 0.9620 |
CNN-A-BiLSTM68 | 0.9511 | 0.9656 | 0.9536 | 0.9521 |
CNN-BiGRU69 | 0.9648 | 0.9755 | 0.9645 | 0.9646 |
TAHAR-student-CNN | 0.9880 | 0.9927 | 0.9865 | 0.9872 |
TAHAR-student-LSTM | 0.9327 | 0.9604 | 0.9398 | 0.9342 |
TAHAR-student-GRU | 0.9665 | 0.9804 | 0.9745 | 0.9701 |
TCN-attention-HAR-teacher | 0.9850 | 0.9903 | 0.9863 | 0.9856 |