Table 1 Comparison of model performance across WISDM datasets.

From: TCN-attention-HAR: human activity recognition based on attention mechanism time convolutional network

Method

Recall

Accuracy

Precision

F1-score

SVM60

0.9049

0.9471

0.9258

0.9121

HMM61

0.9056

0.9436

0.9299

0.9128

Genetic algorithm62

0.9553

0.9724

0.9580

0.9565

GRU

0.9427

0.9676

0.9548

0.9484

GRU-attention63

0.9681

0.9790

0.9740

0.9710

CNN-GRU64

0.9377

0.9632

0.9457

0.9414

LSTM

0.9370

0.9600

0.9382

0.9371

Attention-LSTM

0.9398

0.9589

0.9442

0.9419

BiLSTM

0.9593

0.9734

0.9623

0.9607

CNN-LSTM65,66

0.9557

0.9711

0.9598

0.9576

CNN-BiLSTM67

0.9613

0.9740

0.9629

0.9620

CNN-A-BiLSTM68

0.9511

0.9656

0.9536

0.9521

CNN-BiGRU69

0.9648

0.9755

0.9645

0.9646

TAHAR-student-CNN

0.9880

0.9927

0.9865

0.9872

TAHAR-student-LSTM

0.9327

0.9604

0.9398

0.9342

TAHAR-student-GRU

0.9665

0.9804

0.9745

0.9701

TCN-attention-HAR-teacher

0.9850

0.9903

0.9863

0.9856

  1. Significant values are in bold.