Table 3 Comparison of model performance across USC-HAD datasets.
Method | Recall | Accuracy | Precision | F1-score |
---|---|---|---|---|
SVM | 0.8200 | 0.8941 | 0.8641 | 0.8033 |
HMM | 0.9015 | 0.9453 | 0.9199 | 0.9019 |
Genetic algorithm | 0.9323 | 0.9556 | 0.9381 | 0.9345 |
GRU | 0.7813 | 0.8461 | 0.8115 | 0.7905 |
GRU-attention | 0.9420 | 0.9581 | 0.9431 | 0.9412 |
CNN-GRU | 0.8394 | 0.8963 | 0.8485 | 0.8409 |
LSTM | 0.7663 | 0.8428 | 0.7955 | 0.7709 |
Attention-LSTM | 0.7945 | 0.8628 | 0.8252 | 0.7994 |
BiLSTM | 0.8570 | 0.8946 | 0.8644 | 0.8577 |
CNN-LSTM | 0.8988 | 0.9347 | 0.9030 | 0.8983 |
CNN-BiLSTM | 0.9102 | 0.9448 | 0.9062 | 0.9005 |
CNN-A-BiLSTM | 0.9176 | 0.9414 | 0.9110 | 0.9130 |
CNN-BiGRU | 0.8884 | 0.9264 | 0.8860 | 0.8831 |
TAHAR-student-CNN | 0.8987 | 0.8976 | 0.8482 | 0.8524 |
TAHAR-student-LSTM | 0.8948 | 0.9317 | 0.9079 | 0.8836 |
TAHAR-student-GRU | 0.8976 | 0.9317 | 0.8583 | 0.8701 |
TCN-attention-HAR-teacher | 0.9423 | 0.9632 | 0.9488 | 0.9434 |