Table 3 Comparison of model performance across USC-HAD datasets.

From: TCN-attention-HAR: human activity recognition based on attention mechanism time convolutional network

Method

Recall

Accuracy

Precision

F1-score

SVM

0.8200

0.8941

0.8641

0.8033

HMM

0.9015

0.9453

0.9199

0.9019

Genetic algorithm

0.9323

0.9556

0.9381

0.9345

GRU

0.7813

0.8461

0.8115

0.7905

GRU-attention

0.9420

0.9581

0.9431

0.9412

CNN-GRU

0.8394

0.8963

0.8485

0.8409

LSTM

0.7663

0.8428

0.7955

0.7709

Attention-LSTM

0.7945

0.8628

0.8252

0.7994

BiLSTM

0.8570

0.8946

0.8644

0.8577

CNN-LSTM

0.8988

0.9347

0.9030

0.8983

CNN-BiLSTM

0.9102

0.9448

0.9062

0.9005

CNN-A-BiLSTM

0.9176

0.9414

0.9110

0.9130

CNN-BiGRU

0.8884

0.9264

0.8860

0.8831

TAHAR-student-CNN

0.8987

0.8976

0.8482

0.8524

TAHAR-student-LSTM

0.8948

0.9317

0.9079

0.8836

TAHAR-student-GRU

0.8976

0.9317

0.8583

0.8701

TCN-attention-HAR-teacher

0.9423

0.9632

0.9488

0.9434

  1. Significant values are in bold.