Table 1 Feature-based state-of-the-art methods for action recognition.

From: HARNet in deep learning approach—a systematic survey

Method

Data type

Dataset

Performance

References

Fast Fourier transform

RGB

UCF101, Kinetics

Accuracy: 99.21

11

QSVM

RGB

UCF11, HMDB51

Accuracy: 94.43

12

SVM

RGB

UCSDped-1, UCSDped-2, UMN

Accuracy: 97.14

13

SVM

RGB

UCF11, UCF50

Accuracy: 78.6

14

SVM

RGB

MSRAction3D, UTKinectAction

Accuracy: 94.3

15

SVM

RGB

Weizmann, KTH, Hollywood2

Accuracy: 86.3

16

SVM

RGB

KTH, Weizmann, i3Dpost, Ballet, IXMAS

Accuracy: 95.5

17

SVM

RGB

KTH, UCFSports, Hollywood2

Accuracy: 91.8

18

SVM with ASAGA

RGB

UCSDped 1

Accuracy: 87.2

19

SVM with PSO

Skeleton

MSRAction3D, UT Kinect, Florence3D action

Accuracy: 93.75

20

SVM with GA

RGB

KTH, HMDB51, UCF YouTube, Hollywood2

Accuracy: 95.0

21

SVM-neural network

RGB

KTH, Weizmann

Average Accuracy: 96.4

22

RF

Skeleton

UT Kinect

Accuracy: 92

23

NBNN

3D joints skeleton

MSRAction3D-Test1, MSRAction3D-Test2, MSRAction3D-cross-subject

Accuracy: 95.8

24

HMM-Kernel Discriminant analysis

Silhouette

Elder care data

Accuracy: 95.8

25

HMM

Skeleton

Im-DailyDepthActivity, MSRAction3D (CS), MSRDailyActivity3D (CS)

Accuracy: 74.23

26