Table 2 Distances \(r_{0}^{{\prime }} ,r_{1}^{{\prime }}\), and \(r_{2}^{\prime}\) used in the calculation of mutual impedance between image antenna 1’ and antenna 2 in the parallel (Fig. 2a), aligned (Fig. S3), and perpendicular (Fig. 2d) configurations.

From: Microwave analogy of Förster resonance energy transfer and effect of finite antenna length

 

Parallel \({\text{Z}}_{{21_{{{\text{parl}}}} }}^{\prime}\)

Aligned \({\text{Z}}_{{21_{{{\text{align}}}} }}^{\prime}\)

Perpendicular \({\text{Z}}_{{21_{{{\text{perp}}}} }}^{\prime}\)

\({\text{r}^{\prime}}_{0}\)

\(\sqrt {{\text{R}}^{2} + 4{\text{h}}^{2} + a_{2}^{2} }\)

\(\sqrt {4{\text{h}}^{2} + \left( {{\text{R}} + {\text{a}}_{2} } \right)^{2} }\)

\(\sqrt {{\text{R}}^{2} + \left( {2{\text{h}} + {\text{a}}_{2} } \right)^{2} }\)

\({\text{r}^{\prime}}_{1}\)

\(\sqrt {{\text{R}}^{2} + 4{\text{h}}^{2} + \left( {{\text{L}}/2 - a_{2} } \right)^{2} }\)

\(\sqrt {4{\text{h}}^{2} + \left( {{\text{R}} - {\text{L}}/2 + a_{2} } \right)^{2} }\)

\(\sqrt {{\text{R}}^{2} + \left( {2{\text{h}} - {\text{L}}/2 + a_{2} } \right)^{2} }\)

\({\text{r}^{\prime}}_{2}\)

\(\sqrt {{\text{R}}^{2} + 4{\text{h}}^{2} + \left( {{\text{L}}/2 + a_{2} } \right)^{2} }\)

\(\sqrt {4{\text{h}}^{2} + \left( {{\text{R}} + {\text{L}}/2 + {\text{a}}_{2} } \right)^{2} }\)

\(\sqrt {{\text{R}}^{2} + \left( {2{\text{h}} + {\text{L}}/2 + {\text{a}}_{2} } \right)^{2} }\)